
Intel Confidential

Intel® Virtual RAID on CPU
(Intel® VROC) IOCTLs

IOCTLs for NVME pass-through and NVME RAID
member disks.

Document Revision 1.04

Intel® VROC IOCTLs Overview

2

Intel Confidential

Disclaimer

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis

concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any

patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING

TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH

MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS

AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,

DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY

WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS

NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must

not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information.

The products described in this document may contain design defects or errors known as errata which may cause

the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your

product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,

may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Code names featured are used internally within Intel to identify products that are in development and not yet

publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use

code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal

code names is at the sole risk of the user.

Intel, Atom, Core, and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and other

countries.

*Other names and brands may be claimed as the property of others.

Copyright ©2017 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® VROC IOCTLs Overview

3

Intel Confidential

1 Intel® VROC IOCTLs Overview .. 5

1.1 The purpose of this document .. 5
1.2 Intel® Volume Management Device (Intel® VMD) Overview 5
1.3 Journaling Drives .. 5
1.4 Backwards compatibility .. 5

2 NVMe admin commands ... 7

2.1 List of supported admin commands ... 7
2.2 List of supported data commands ... 7
2.3 NVMe SMART / Health Information .. 7
2.4 Identify NVMe .. 8
2.5 Asynchronous Events .. 8
2.6 NVMe Firmware update .. 8
2.7 NVMe Firmware activate .. 8
2.8 Get Features .. 8
2.9 Set Features .. 9
2.10 Device Self-test .. 9
2.11 Format NVM command .. 9
2.12 Security Send command .. 9
2.13 Security Receive command .. 9

3 Public NVMe IOCTLs support ... 10

3.1 Overview ... 10
3.2 Microsoft firmware update NVMe IOCTLs .. 10
3.3 Firmware update using SCSI pass through IOCTL 11

4 Private NVMe IOCTLs support .. 12

4.1 Private IOCTLs signature and control code details. 12
4.2 Private IOCTLs data structure ... 12

5 Private Intel® VROC IOCTLs ... 14

5.1 Overview. .. 14
5.2 List of private IOCTLs for RAID volumes .. 14
5.3 NVME_GET_NUMBER_OF_RAID_VOLUMES ... 14

5.3.1 IOCTL signature and control code: ... 15
5.3.2 IOCTL data structure: .. 15

5.4 NVME_GET_RAID_INFORMATION .. 15
5.4.1 IOCTL signature and control code .. 15
5.4.2 IOCTL data structure .. 16

5.5 NVME_GET_RAID_CONFIGURATION .. 16
5.5.1 IOCTL signature and control code .. 17
5.5.2 IOCTL data structure .. 17
5.5.3 Input/Output DataBuffer details .. 17

5.6 NVME_GET_NUMBER_OF_SPARE_DISKS .. 18
5.6.1 IOCTL signature and control code: ... 18
5.6.2 IOCTL data structure: .. 18

5.7 NVME_GET_SPARE_DISKS_INFORMATION ... 19
5.7.1 IOCTL signature and control code .. 19

Intel® VROC IOCTLs Overview

4

Intel Confidential

5.7.2 IOCTL data structure .. 19
5.7.3 Input/Output DataBuffer structure ... 19

5.8 NVME_GET_NUMBER_OF_PASSTHROUGH_DISKS 20
5.8.1 IOCTL signature and control code: ... 20
5.8.2 IOCTL data structure: .. 21

5.9 NVME_GET_PASSTHROUGH_DISKS_INFORMATION 21
5.9.1 IOCTL signature and control code .. 21
5.9.2 IOCTL data structure .. 21
5.9.3 Input/Output DataBuffer structure ... 22

5.10 NVME_GET_NUMBER_OF_JOURNALING DRIVES 23
5.10.1 IOCTL signature and control code: ... 23
5.10.2 IOCTL data structure: .. 23

5.11 NVME_GET_JOURNALING_DRIVES_INFORMATION 23
5.11.1 IOCTL signature and control code .. 23
5.11.2 IOCTL data structure .. 24
5.11.3 Input/Output DataBuffer structure .. 24

5.12 NVME_PASS_THROUGH_SRB_IO_CODE ... 25
5.12.1 IOCTL signature and control code .. 25
5.12.2 IOCTL data structure .. 25
5.12.3 Error handling ... 27

6 Example usage .. 29

7 References .. 35

Intel® VROC IOCTLs Overview

5

Intel Confidential

1 Intel® VROC IOCTLs Overview

1.1 The purpose of this document

This document presents all NVMe admin commands supported by Intel VROC and
describes how to send them to a particular NVMe device. This includes usage of Intel®

VROC IOCTLs to get information about disks in the system and using those
information to send NVMe private IOCTL to a given disk. Ending section consists of
sample code showing how to send an NVMe admin command to an NVMe RAID
member device.

1.2 Intel® Volume Management Device (Intel® VMD)
Overview

In previous versions of Intel® Rapid Storage Technology enterprise (Intel® RSTe)

NVMe driver, all pass-through devices had a storage controller correlated with it. If we
wanted to send an NVMe pass-through IOCTL to a device, we had to send it to its
controller. If we created a RAID volume, its member disks were no longer visible in
device manager. Devices marked as spare behaved the same. In order to send an
IOCTL to particular drives we had to target Intel® RSTe Virtual Controller, with Return
Code set to value correlated with this drive. This code could be obtained by private

Intel® RSTe NVMe IOCTLs.

Intel® VROC driver on the other hand has been developed with Intel® Volume
Management Device (Intel® VMD) in mind. With this technology, we can group NVMe

devices into VMD domains. Because of that, even if IOCTL target disk is passthrough,

it should be sent to a VMD controller representing a domain it is a part of and contains
a correct Return Code. This code can be obtained by new IOCTLs:
NVME_GET_NUMBER_OF_PASSTHROUGH_DISKS (Described in 5.8) and
NVME_GET_PASSTHROUGH_DISKS_INFORMATION (Described in 5.9).

1.3 Journaling Drives

Intel® VROC introduces a new feature: RAID5 Write Hole closure. In context of

sending IOCTLs, we only need to know, that this feature introduces new possible disk
usage in RAID systems: Journaling Drive. Journaling Drive as any other drive can be a
target of NVMe passhtrough IOCTL. To target such drive we need to send it to VMD
controller representing domain it is part of and set Return Code to value correlated

with that drive. Obtaining that value for Journaling Drives is possible by sending

IOCTLs: NVME_GET_NUMBER_OF_JOURNALING DRIVES (Described in 5.10) and
NVME_GET_JOURNALING_DRIVES_INFORMATION (Described in 5.11).

1.4 Backwards compatibility

Most structures of IOCTLs used to send NVMe passthrough IOCTL and access RAID

members and spare devices haven’t changed since RSTe 4.3. The differences are that:

Intel® VROC IOCTLs Overview

6

Intel Confidential

 they must now target Intel VMD instead of Intel® RSTe Virtual Controller,

 the NVME_MEMBER_DISK_INFORMATION structure has been extended and therefor

the output buffer for the IOCTLs that return information about drives must be

bigger (for updated NVME_MEMBER_DISK_INFORMATION structure layout check

5.5.3).

NVMe admin commands

7

Intel Confidential

2 NVMe admin commands
Intel® VROC supports all admin commands currently supported by NSG standalone
driver including vendor specific admin commands.

2.1 List of supported admin commands

Command Opcode

Get Log Page 0x02

Identify 0x06

Set Features 0x09

Get Features 0x0A

Asynchronous Event Request 0x0C

Firmware Activate 0x10

Firmware Image Download 0x11

Device Self-test 0x14

Format NVM 0x80

Security Send 0x81

Security Receive 0x82

Any vendor specific admin command 0xC0-0xFF

2.2 List of supported data commands

Command Opcode

Flush 0x00

Write Uncorrectable 0x04

Compare 0x05

Data Set Management 0x09

Any vendor specific NVM commands 0x80-0xFF

2.3 NVMe SMART / Health Information
To read values of SMART and general health information the application sends Private

IOCTL ADMIN_GET_LOG_PAGE.
Intel® VROC uses private IOCTL mechanism to pass through ADMIN_GET_LOG_PAGE

command to appropriate NVMe device.
Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.) is an open standard
used by hard-drives and hosts to monitor drive health and report potential problems.
The SMART and health information are collected over the life of the NVMe controller
and is retained across power cycles.

NVMe admin commands

8

Intel Confidential

By default, SMART monitoring is always enabled on NVMe products.

2.4 Identify NVMe
The Identify command returns a data buffer that describes the NVMe controller.
To read identification parameters from NVMe device applications will send identify

command.
Intel® VROC uses private IOCTL mechanism to pass through ADMIN_IDENTIFY
command to appropriate NVMe device.
Standalone Intel® NVMe driver supports this IOCTL properly.

2.5 Asynchronous Events
Intel® VROC uses private IOCTL mechanism to pass through
ADMIN_ASYNCHRONOUS_EVENT_REQUEST command to appropriate NVMe device.
Asynchronous events are used to notify host software of error and health information
as these events occur. To enable asynchronous events to be reported by the
controller, host software needs to issue one or more Asynchronous Event Request
commands to the controller.

2.6 NVMe Firmware update
Intel® VROC uses private IOCTL mechanism to pass through
ADMIN_FIRMWARE_IMAGE_DOWNLOAD command to appropriate NVMe device.
Standalone Intel® NVMe driver supports this IOCTL properly.

The ADMIN_FIRMWARE_IMAGE_DOWNLOAD private IOCTL is used to download
firmware image to the controller.
The new firmware image will not start to run right after
ADMIN_FIRMWARE_IMAGE_DOWNLOAD command. To select which firmware version
will be executed after NVMe device reset ADMIN_FIRMWARE_ACTIVATE command
must be used.

2.7 NVMe Firmware activate
Intel® VROC uses private IOCTL mechanism to pass through
ADMIN_FIRMWARE_ACTIVATE command.
Standalone Intel® NVMe driver supports this IOCTL properly.
The Firmware Activate command is used to verify that a valid firmware image has
been downloaded and to commit that revision to a specific firmware slot. The host

may select the firmware image to activate on the next controller reset as part of this
command.

2.8 Get Features
The Get Features command retrieves the attributes of the Feature specified.

NVMe admin commands

9

Intel Confidential

Intel® VROC uses private IOCTL mechanism to pass through ADMIN_GET_FEATURES
command.
Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

2.9 Set Features
The Set Features command specifies the attributes of the Feature indicated.
Intel® VROC uses private IOCTL mechanism to pass through ADMIN_SET_FEATURES
command.
Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

2.10 Device Self-test

The Device Self-test command is used to start the device self-test operation or abort a
device self-test operation.
Intel® VROC uses private IOCTL mechanism to pass through

ADMIN_DEVICE_SELF_TEST command.
Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

2.11 Format NVM command
The Format NVM command is used to low level format the NVM media. This is used

when the host wants to change the LBA data size and/or metadata size.
Intel® VROC passes this command to NVMe device in pass through mode and RAID

mode.

2.12 Security Send command
The Security Send command is used to transfer security protocol data to the
controller. The data structure transferred to the controller as part of this command

contains security protocol specific commands to be performed by the controller.
Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

2.13 Security Receive command
The Security Receive command transfers the status and data result of one or more

Security Send commands that were previously submitted to the controller.
The association between a Security Receive command and previous Security Send
command is dependent on the Security Protocol.
Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

Public NVMe IOCTLs support

10

Intel Confidential

3 Public NVMe IOCTLs support

3.1 Overview

Intel® VROC supports number of IOCTLs described below. Support will be limited to
passing through described commands to NVMe driver, according to their signature.

3.2 Microsoft firmware update NVMe IOCTLs

Following firmware update IOCTLs are not blocked by Intel® VROC driver however,

they should not be used on RAID member drives:

Control code Description

IOCTL_STORAGE_FIRMWARE_GET_INFO

Used to query storage device for firmware information.

Details:

https://msdn.microsoft.com/en-
us/library/windows/desktop/mt718109(v=vs.85).aspx

IOCTL_STORAGE_FIRMWARE_DOWNLOAD

Used to download firmware image to target storage device.

Details:

https://msdn.microsoft.com/en-
us/library/windows/desktop/mt718108(v=vs.85).aspx

IOCTL_STORAGE_FIRMWARE_ACTIVATE

Used to activate downloaded firmware image on target storage
device.

Details:

https://msdn.microsoft.com/en-
us/library/windows/desktop/mt718107(v=vs.85).aspx

In case of NVMe devices under VMD controller, firmware IOCTLs shall be sent to

handle, obtained by CreateFile function with file name parameter set to physical

device name i.e.

HANDLE hDevice = CreateFile(

 _T("\\\\.\\PhysicalDrive0"),

 0,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

Public NVMe IOCTLs support

11

Intel Confidential

3.3 Firmware update using SCSI pass through IOCTL

With Intel® VROC it is possible to update device firmware using

IOCTL_SCSI_PASS_THROUGH_DIRECT command (https://msdn.microsoft.com/en-
us/library/windows/hardware/ff560521(v=vs.85).aspx).

For details, refer to SCSI Primary Commands specification.

Private NVMe IOCTLs support

12

Intel Confidential

4 Private NVMe IOCTLs support
For standalone NVMe driver private IOCTL “NVME_PASS_THROUGH_IOCTL” is used to
pass NVMe admin commands to NVMe device. The same IOCTL is supported by Intel®
VROC. It can be sent to all NVMe devices even if it is a part of RAID volume.
If target disk isn’t part of any VMD domain (VMD disabled), IOCTL can be sent directly
to its controller as with standalone NVMe driver (please note, this is out of scope of
Intel® VROC driver).

Otherwise it should be sent to one of the VMD controllers. To address specific disk the
special ID code should be placed in return code of IOCTL before sending. Obtaining
this ID code is possible by using NVME_GET_RAID_CONFIGURATION (See: 5.5),
NVME_GET_SPARE_DISKS_INFORMATION (See: 5.7),
NVME_GET_PASSTHROUGH_DISKS_INFORMATION (See: 5.9) or

NVME_GET_JOURNALING_DRIVES_INFORMATION (See: 5.11), depending on target
disk status.

4.1 Private IOCTLs signature and control code
details.
The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeMini"

IOCTL control code:
#define NVME_PASS_THROUGH_SRB_IO_CODE \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

IOCTL return code: rsteDiskID

4.2 Private IOCTLs data structure
typedef struct _NVME_PASS_THROUGH_IOCTL

{

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG VendorSpecific[NVME_IOCTL_VENDOR_SPECIFIC_DW_SIZE];

 ULONG NVMeCmd[NVME_IOCTL_CMD_DW_SIZE];

 ULONG CplEntry[NVME_IOCTL_COMPLETE_DW_SIZE];

 ULONG Direction;

 ULONG QueueId;

 ULONG DataBufferLen;

 ULONG MetaDataLen;

 ULONG ReturnBufferLen;

 UCHAR DataBuffer[1];

} NVME_PASS_THROUGH_IOCTL, *PNVME_PASS_THROUGH_IOCTL;

Name Description
SRB_IO_CONTROL SrbIoCtrl Input Windows specific IOCTL header

Details:

http://msdn.microsoft.com/en-

us/library/windows/hardware/ff566
339(v=vs.85).aspx

ULONG

VendorSpecific[NVME_IOCTL_VENDOR_SP

ECIFIC_DW_SIZE];

Input Vendor unique qualifiers for vendor
unique commands

ULONG

NVMeCmd[NVME_IOCTL_CMD_DW_SIZE];
Input 64-byte submission entry defined in

NVMe Specification

Private NVMe IOCTLs support

13

Intel Confidential

ULONG

CplEntry[NVME_IOCTL_COMPLETE_DW_SIZ

E];

Input DW[0..3] of completion entry

ULONG Direction; Input Data transfer direction, from host

to device or vice versa
ULONG QueueId; Input 0 means using Admin queue,

otherwise, IO queue is used
ULONG DataBufferLen; Input Transfer byte length, including

Metadata, starting at DataBuffer
ULONG MetaDataLen; Input Set to 0 if not supported or

interleaved with data
ULONG ReturnBufferLen; Input Returned byte length from device

to host, at least the length of this

structure. When data transfer

required, add the length of the
data.

UCHAR DataBuffer[1]; Input Start with Metadata if present, and
then regular data

Private Intel® VROC IOCTLs

14

Intel Confidential

5 Private Intel® VROC IOCTLs

5.1 Overview.
Intel® VROC supports creating RAID volumes only with devices connected to PCI-E
slots with VMD enabled.
Every VMD domain is visible in system as a separate storage controller. All IOCTLs to
NVMe devices (RAID members, spares, journaling drives and passthrough drives) and

NVMe RAID volumes need to be sent to the controller representing domain, which
target disk or volume is part of. The only exception is NVME_PASS_THROUGH IOCTL
which can be sent to any VMD controller.

5.2 List of private IOCTLs for RAID volumes
List of private Intel VROC IOCTLs and IOCTL signatures:

IOCTL name IOCTL
signature

Comment

NVME_GET_NUMBER_OF_RAID_VOLUMES NvmeRAID
NVME_GET_RAID_INFORMATION NvmeRAID
NVME_GET_RAID_CONFIGURATION NvmeRAID
NVME_GET_NUMBER_OF_SPARE_DISKS NvmeRAID Spare devices are not

members of any RAID
volumes.

NVME_GET_RAID_SPARE_DISKS_INFORMATION NvmeRAID
NVME_GET_NUMBER_OF_PASSTHROUGH_DISKS NvmeRAID
NVME_GET_PASSTHROUGH_DISKS_INFORMATION NvmeRAID
NVME_GET_NUMBER_OF_JOURNALING_DRIVES NvmeRAID
NVME_GET_ JOURNALING_DRIVES

_INFORMATION

NvmeRAID

NVME_PASS_THROUGH_SRB_IO_CODE NvmeRAID Similar to pass through
NVME: It has the same
control code but different
signature. This IOCTL will be

used to send admin
commands to NVMe RAID
member and spare devices

IOCTLs added in Intel® VROC has been highlighted in green. They are not supported
by previous versions of RSTe. Rest of the IOCTLs haven’t been changed since previous
versions of Intel® RSTe.

5.3 NVME_GET_NUMBER_OF_RAID_VOLUMES
This IOCTL can be used to get number of NVME RAID volumes present in target VMD
domain.

Private Intel® VROC IOCTLs

15

Intel Confidential

5.3.1 IOCTL signature and control code:

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:

#define NVME_GET_NUMBER_OF_RAID_VOLUMES \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x805, METHOD_BUFFERED, FILE_ANY_ACCESS)

5.3.2 IOCTL data structure:

typedef struct _NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL {

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG numberOfRaidVolumes;

} NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL, *PNVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL;

Name Direction Description

SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85
).aspx

ULONG

numberOfRaidVolumes
Output Number of NVME Raid volumes in target VMD

domain.
0 – no NVME RAID volumes.

5.4 NVME_GET_RAID_INFORMATION
This IOCTL provides general information about RAID volume:

 Model,
 Firmware version,
 Serial number,
 Total number of RAID member devices,

5.4.1 IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_GET_RAID_INFORMATION \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x806, METHOD_BUFFERED, FILE_ANY_ACCESS)

Private Intel® VROC IOCTLs

16

Intel Confidential

5.4.2 IOCTL data structure
typedef struct _NVME_GET_RAID_INFORMATION_IOCTL {

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG indexOfRaidVolume;

 CHAR raidType[8];

 CHAR model[40];

 CHAR firmwareVersion[8];

 CHAR serialNumber[40];

 ULONG numberOfMemberDisks;

} NVME_GET_RAID_INFORMATION_IOCTL, *PNVME_GET_RAID_INFORMATION_IOCTL;

Description of data structure:

Name Direction Description

SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:
http://msdn.microsoft.com/en-

us/library/windows/hardware/ff566339(v=vs.85
).aspx

ULONG

indexOfRaidVolume
Input Range from 1 to numberOfRaidVolumes.

To get maximum value of numberOfRaidVolumes
use NVME_GET_NUMBER_OF_RAID_VOLUMES

CHAR raidType[8] Output 8 char string null terminated describing type of
RAID.
Returned strings: RADI0, RAID1, RADI5,

RAID10,
CHAR model[40] Output String presented by SSD Toolbox in “Drive

Summary” tab.
CHAR

firmwareVersion[8]
Output String presented by SSD Toolbox in “Drive

Summary” tab.
CHAR

serialNumber[40]
Output String presented by SSD Toolbox in “Drive

Summary” tab.
ULONG

numberOfMemberDisks
Output Number of member devices in NVME RAID

volume.

5.5 NVME_GET_RAID_CONFIGURATION
This IOCTL can be send to Intel® VROC driver to get following information about

NVME member devices:
- rsteDiskID,
- model,
- firmware version,
- serial number,
- detailed information about the physical location of the drive (more details in

Input/Output DataBuffer details paragraph)
In response to this IOCTL data buffer will be filled with data about all NVME RAID
member devices.
Size of this IOCTL depends on total number of NVMe member devices.

Private Intel® VROC IOCTLs

17

Intel Confidential

5.5.1 IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_GET_RAID_CONFIGURATION \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x807, METHOD_BUFFERED, FILE_ANY_ACCESS)

5.5.2 IOCTL data structure
typedef struct _NVME_GET_RAID_CONFIGURATION_IOCTL {

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG indexOfRaidVolume;

 ULONG ReturnBufferLen;

 UCHAR DataBuffer[1];

} NVME_GET_RAID_CONFIGURATION_IOCTL, *PNVME_GET_RAID_CONFIGURATION_IOCTL;

Name Direction Description
SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).

aspx
ULONG

indexOfRaidVolume
Input Range from 1 to numberOfRaidVolumes.

To get maximum value of numberOfRaidVolumes
use NVME_GET_NUMBER_OF_RAID_VOLUMES

ULONG

ReturnBufferLen
Input Size of DataBuffer:

ReturnBufferLen = numberOfMemberDisks *

sizeof(NVME_MEMBER_DISK_INFORMATION)
UCHAR

DataBuffer[1]
In/Out Data buffer for member devices details.

5.5.3 Input/Output DataBuffer details

Application must provide “big enough” DataBuffer to get information about all member

devices.
The size of DataBuffer:

ReturnBufferLen = numberOfMemberDisks * sizeof(NVME_MEMBER_DISK_INFORMATION)

Where:

numberOfMemberDisks – is a total number of NVMe devices used to build RAID
volume.
NVME_MEMBER_DISK_INFORMATION - data structure containing information about

NVMe device:

typedef struct _NVME_MEMBER_DISK_INFORMATION {

 ULONG rsteDiskID;

 CHAR diskModel[40];

 CHAR firmwareVersion[8];

 CHAR serialNumber[40];

ULONG socketNumber;

ULONG vmdControllerNumber;

Private Intel® VROC IOCTLs

18

Intel Confidential

ULONG rootPortOffset;

ULONG slotNumber;

} NVME_MEMBER_DISK_INFORMATION, *PNVME_MEMBER_DISK_INFORMATION;

Name Direction Description
ULONG rsteDiskID Output 32 bit ID of disk. This ID must be used to

send NVMe admin requests to individual
NVMe devices marked as spare.

CHAR diskModel[40] Output String presented by SSD Toolbox in “Drive
Summary” tab

CHAR

firmwareVersion[8]
Output String presented by SSD Toolbox in “Drive

Summary” tab
CHAR

serialNumber[40]
Output String presented by SSD Toolbox in “Drive

Summary” tab
ULONG socketNumber Output CPU socket number.
ULONG

vmdControllerNumber
Output VMD domain number.

ULONG rootPortOffset Output In case of direct attached NVMe drives, offset
is a 0-based number of the slot, where the
drive is attached, within a given VMD domain.
In case of switch attached drives, this field

will be equal to switch slot number and a
slotNumber field has to be used to identify
the drives instead.

ULONG slotNumber Output Slot identifier.

5.6 NVME_GET_NUMBER_OF_SPARE_DISKS
This IOCTL can be used to get total number of NVMe devices marked as spare drives
in target VMD domain.

5.6.1 IOCTL signature and control code:

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_GET_NUMBER_OF_SPARE_DISKS \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x808, METHOD_BUFFERED, FILE_ANY_ACCESS)

5.6.2 IOCTL data structure:
typedef struct _NVME_GET_NUMBER_OF_SPARE_DISKS_IOCTL {

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG numberOfSpareDisks;

} NVME_GET_NUMBER_OF_SPARE_DISKS_IOCTL, *PNVME_GET_NUMBER_OF_SPARE_DISKS_IOCTL;

Name Direction Description

SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:

Private Intel® VROC IOCTLs

19

Intel Confidential

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).
aspx

ULONG

numberOfSpareDisks
Output Total number of NVME devices marked as spare

in target VMD domain.

5.7 NVME_GET_SPARE_DISKS_INFORMATION

This IOCTL can be send to Intel® VROC driver to get the following information about
NVME spare devices:

- rsteDiskID,

- model,

- firmware version,
- serial number,
- detailed information about the physical location of the drive (more details in

Input/Output DataBuffer details paragraph)
In response to this IOCTL data buffer will be filled with data about all NVME devices
marked as spare.

Size of this IOCTL depends on total number of NVMe spare devices in system.

5.7.1 IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_GET_SPARE_DISKS_INFORMATION \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x809, METHOD_BUFFERED, FILE_ANY_ACCESS)

5.7.2 IOCTL data structure
typedef struct _NVME_GET_SPARE_DISKS_INFORMATION_IOCTL {

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG ReturnBufferLen;

 UCHAR DataBuffer[1];

} NVME_GET_SPARE_DISKS_INFORMATION_IOCTL,

*PNVME_GET_SPARE_DISKS_INFORMATION_IOCTL;

Name Direction Description
SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).aspx

ULONG

ReturnBufferLen
Input Size of DataBuffer:

ReturnBufferLen = numberOfSpareDisks *

sizeof(NVME_DISK_INFORMATION)
UCHAR

DataBuffer[1]
In/Out Data buffer for member devices details.

5.7.3 Input/Output DataBuffer structure

Application must provide “big enough” DataBuffer to get information about all spare
devices.

Private Intel® VROC IOCTLs

20

Intel Confidential

The size of DataBuffer:

ReturnBufferLen = numberOfSpareDisks * sizeof(NVME_DISK_INFORMATION)

Where:
numberOfSpareDisks – is a total number of NVMe devices marked as spare.
NVME_DISK_INFORMATION - data structure containing information about NVMe disk:

typedef struct _NVME_DISK_INFORMATION {

 ULONG rsteDiskID;

 CHAR diskModel[40];

 CHAR firmwareVersion[8];

 CHAR serialNumber[40];

ULONG socketNumber;

ULONG vmdControllerNumber;

ULONG rootPortOffset;

ULONG slotNumber;

} NVME_DISK_INFORMATION, *PNVME_DISK_INFORMATION;

Name Direction Description
ULONG rsteDiskID Output 32 bit ID of disk. This ID must be used to

send NVMe admin requests to individual
NVMe devices marked as spare.

CHAR diskModel[40] Output String presented by SSD Toolbox in “Drive
Summary” tab

CHAR

firmwareVersion[8]
Output String presented by SSD Toolbox in “Drive

Summary” tab
CHAR

serialNumber[40]
Output String presented by SSD Toolbox in “Drive

Summary” tab
ULONG socketNumber Output CPU socket number.
ULONG

vmdControllerNumber
Output VMD domain number.

ULONG rootPortOffset Output In case of direct attached NVMe drives, offset
is a 0-based number of the slot, where the
drive is attached, within a given VMD domain.
In case of switch attached drives, this field
will be equal to switch slot number and a
slotNumber field has to be used to identify

the drives instead.
ULONG slotNumber Output Slot identifier.

5.8 NVME_GET_NUMBER_OF_PASSTHROUGH_DISKS
This IOCTL can be used to get total number of NVMe devices that are not member
devices of any volume nor marked as spare in target VMD domain.

5.8.1 IOCTL signature and control code:

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_GET_NUMBER_OF_PASSTHROUGH_DISKS \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x80A, METHOD_BUFFERED, FILE_ANY_ACCESS)

Private Intel® VROC IOCTLs

21

Intel Confidential

5.8.2 IOCTL data structure:
typedef struct _NVME_GET_NUMBER_OF_PASSTHROUGH_DISKS_IOCTL {

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG numberOfPassthroughDisks;

} NVME_GET_NUMBER_OF_PASSTHROUGH_DISKS_IOCTL,

*PNVME_GET_NUMBER_OF_PASSTHROUGH_DISKS_IOCTL;

Name Direction Description
SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).
aspx

ULONG

numberOfPassthrough

Disks

Output Total number of NVME passthrough devices in

target VMD domain.

5.9 NVME_GET_PASSTHROUGH_DISKS_INFORMATION

This IOCTL can be send to Intel® VROC driver to get the following information about
NVME passthrough devices:

- rsteDiskID,
- model,

- firmware version,
- serial number,
- detailed information about the physical location of the drive (more details in

Input/Output DataBuffer details paragraph)
In response to this IOCTL data buffer will be filled with data about all NVME
passthrough devices.

Size of this IOCTL depends on total number of NVMe passthrough devices in target
VMD domain.

5.9.1 IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_GET_PASSTHROUGH_DISKS_INFORMATION \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x80B, METHOD_BUFFERED, FILE_ANY_ACCESS)

5.9.2 IOCTL data structure
typedef struct _NVME_GET_PASSTHROUGH_DISKS_INFORMATION_IOCTL {

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG ReturnBufferLen;

 UCHAR DataBuffer[1];

} NVME_GET_PASSTHROUGH_DISKS_INFORMATION_IOCTL,

*PNVME_GET_PASSTHROUGH_DISKS_INFORMATION_IOCTL;

Name Direction Description
SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:

Private Intel® VROC IOCTLs

22

Intel Confidential

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).aspx

ULONG

ReturnBufferLen
Input Size of DataBuffer:

ReturnBufferLen = numberOfPassthroughDisks *

sizeof(NVME_DISK_INFORMATION)
UCHAR

DataBuffer[1]
In/Out Data buffer for member devices details.

5.9.3 Input/Output DataBuffer structure

Application must provide “big enough” DataBuffer to get information about all
pasthrough devices.
The size of DataBuffer:

ReturnBufferLen = numberOfPassthroughDisks * sizeof(NVME_DISK_INFORMATION)

Where:

numberOfPassthroughDisks – is a total number of NVMe passthrough devices in target
VMD domain.
NVME_DISK_INFORMATION - data structure containing information about NVMe disk:

typedef struct _NVME_DISK_INFORMATION {

 ULONG rsteDiskID;

 CHAR diskModel[40];

 CHAR firmwareVersion[8];

 CHAR serialNumber[40];

ULONG socketNumber;

ULONG vmdControllerNumber;

ULONG rootPortOffset;

ULONG slotNumber;

} NVME_DISK_INFORMATION, *PNVME_DISK_INFORMATION;

Name Direction Description
ULONG rsteDiskID Output 32 bit ID of disk. This ID must be used to

send NVMe admin requests to individual
NVMe passthrough devices.

CHAR diskModel[40] Output String presented by SSD Toolbox in “Drive
Summary” tab

CHAR

firmwareVersion[8]
Output String presented by SSD Toolbox in “Drive

Summary” tab
CHAR

serialNumber[40]
Output String presented by SSD Toolbox in “Drive

Summary” tab
ULONG socketNumber Output CPU socket number.
ULONG

vmdControllerNumber
Output VMD domain number.

ULONG rootPortOffset Output In case of direct attached NVMe drives, offset

is a 0-based number of the slot, where the
drive is attached, within a given VMD domain.
In case of switch attached drives, this field
will be equal to switch slot number and a
slotNumber field has to be used to identify

the drives instead.
ULONG slotNumber Output Slot identifier.

Private Intel® VROC IOCTLs

23

Intel Confidential

5.10 NVME_GET_NUMBER_OF_JOURNALING DRIVES
This IOCTL can be used to get total number of NVMe devices that are used as
journaling drives in target VMD domain.

5.10.1 IOCTL signature and control code:

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_GET_NUMBER_OF_JOURNALING_DRIVES \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x80C, METHOD_BUFFERED, FILE_ANY_ACCESS)

5.10.2 IOCTL data structure:
typedef struct _NVME_GET_NUMBER_OF_JOURNALING_DRIVES_IOCTL {

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG numberOfJournalingDrives;

} NVME_GET_NUMBER_OF_JOURNALING_DRIVES_IOCTL,

*PNVME_GET_NUMBER_OF_JOURNALING_DRIVES_IOCTL;

Name Direction Description

SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.8
5).aspx

ULONG

numberOfJournalingDri

ves

Output Total number of NVME journaling drives in

target VMD domain.

5.11 NVME_GET_JOURNALING_DRIVES_INFORMATION

This IOCTL can be send to Intel® VROC driver to get the following information about
NVME journaling drives:

- rsteDiskID,
- model,

- firmware version,
- serial number,
- detailed information about the physical location of the drive (more details in

Input/Output DataBuffer details paragraph)
In response to this IOCTL data buffer will be filled with data about all NVME journaling
drives.
Size of this IOCTL depends on total number of NVMe journaling drives in target VMD

domain.

5.11.1 IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_GET_JOURNALING_DRIVES_INFORMATION \

Private Intel® VROC IOCTLs

24

Intel Confidential

 CTL_CODE(NVME_STORPORT_DRIVER, 0x80D, METHOD_BUFFERED, FILE_ANY_ACCESS)

5.11.2 IOCTL data structure
typedef struct _NVME_GET_JOURNALING_DRIVES_INFORMATION_IOCTL {

 SRB_IO_CONTROL SrbIoCtrl;

 ULONG ReturnBufferLen;

 UCHAR DataBuffer[1];

} NVME_GET_JOURNALING_DRIVES_INFORMATION_IOCTL, *

PNVME_GET_JOURNALING_DRIVES_INFORMATION_IOCTL;

Name Direction Description
SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:
http://msdn.microsoft.com/en-

us/library/windows/hardware/ff566339(v=vs.85).aspx
ULONG

ReturnBufferLen
Input Size of DataBuffer:

ReturnBufferLen = numberOfJournalingDrives *

sizeof(NVME_DISK_INFORMATION)
UCHAR

DataBuffer[1]
In/Out Data buffer for journaling drives details.

5.11.3 Input/Output DataBuffer structure

Application must provide “big enough” DataBuffer to get information about all
pasthrough devices.
The size of DataBuffer:

ReturnBufferLen = numberOfJournalingDrives * sizeof(NVME_DISK_INFORMATION)

Where:

numberOfJournalingDrives – is a number of NVMe journaling drives in target domain.
NVME_DISK_INFORMATION - data structure containing information about NVMe disk:

typedef struct _NVME_DISK_INFORMATION {

 ULONG rsteDiskID;

 CHAR diskModel[40];

 CHAR firmwareVersion[8];

 CHAR serialNumber[40];

ULONG socketNumber;

ULONG vmdControllerNumber;

ULONG rootPortOffset;

ULONG slotNumber;

} NVME_DISK_INFORMATION, *PNVME_DISK_INFORMATION;

Name Direction Description
ULONG rsteDiskID Output 32 bit ID of disk. This ID must be used to

send NVMe admin requests to individual
NVMe journaling drive.

CHAR diskModel[40] Output String presented by SSD Toolbox in “Drive
Summary” tab

CHAR

firmwareVersion[8]
Output String presented by SSD Toolbox in “Drive

Summary” tab
CHAR

serialNumber[40]
Output String presented by SSD Toolbox in “Drive

Summary” tab

Private Intel® VROC IOCTLs

25

Intel Confidential

ULONG socketNumber Output CPU socket number.
ULONG

vmdControllerNumber
Output VMD domain number.

ULONG rootPortOffset Output In case of direct attached NVMe drives, offset
is a 0-based number of the slot, where the
drive is attached, within a given VMD domain.
In case of switch attached drives, this field
will be equal to switch slot number and a
slotNumber field has to be used to identify

the drives instead.
ULONG slotNumber Output Slot identifier.

5.12 NVME_PASS_THROUGH_SRB_IO_CODE

Intel® VROC will provide an IOCTL to pass through admin commands to all NVMe
devices.

Warning: all IOCTLs for NVMe devices need to be send to Intel® VMD, instead of

sending directly to NVMe devices.

List of admin commands which can be send to NVMe devices using private IOCTL:

Command Hex

ADMIN_GET_LOG_PAGE 0x02

ADMIN_IDENTIFY 0x06

ADMIN_SET_FEATURES 0x09

ADMIN_GET_FEATURES 0x0A

ADMIN_ASYNCHRONOUS_EVENT_REQUEST 0x0C

ADMIN_FIRMWARE_ACTIVATE 0x10

ADMIN_FIRMWARE_IMAGE_DOWNLOAD 0x11

ADMIN_FORMAT_NVM 0x80

ADMIN_SECURITY_SEND 0x81

ADMIN_SECURITY_RECEIVE 0x82

Any vendor specific command 0xC0-0xFF

5.12.1 IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_PASS_THROUGH_SRB_IO_CODE \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

5.12.2 IOCTL data structure

To simplify passthrough IOCTL interface Intel® VROC will reuse
NVME_PASS_THROUGH_IOCTL data structure introduced in standalone NVMe driver.
To properly identify RAID member disk, a property “ReturnCode” in SRB_IO_CONTROL

data structure will be used.

Application will have to write value of rsteDiskID returned by
NVME_GET_RAID_CONFIGURATION to property “ReturnCode”.

Private Intel® VROC IOCTLs

26

Intel Confidential

 typedef struct _SRB_IO_CONTROL {
 ULONG HeaderLength;

 UCHAR Signature[8];

 ULONG Timeout;

 ULONG ControlCode;

 ULONG ReturnCode; //rsteDiskID must be written here before IOCTL send

 ULONG Length;

} SRB_IO_CONTROL, *PSRB_IO_CONTROL;

typedef struct _NVME_PASS_THROUGH_IOCTL {

SRB_IO_CONTROL SrbIoCtrl;

ULONG VendorSpecific[NVME_IOCTL_VENDOR_SPECIFIC_DW_SIZE];

ULONG NVMeCmd[NVME_IOCTL_CMD_DW_SIZE];

ULONG CplEntry[NVME_IOCTL_COMPLETE_DW_SIZE];

ULONG Direction;

ULONG QueueId;

ULONG DataBufferLen;

ULONG MetaDataLen;

ULONG ReturnBufferLen;

UCHAR DataBuffer[1];

} NVME_PASS_THROUGH_IOCTL, *NVME_PASS_THROUGH_IOCTL;

Name

Description

SRB_IO_CONTROL

SrbIoCtrl
Input Windows specific IOCTL header

Details:
http://msdn.microsoft.com/en-

us/library/windows/hardware/ff566339(v=vs.85).aspx

IMPORTANT: “ReturnCode” property must be filled with
rsteDiskID.

rsteDiskID is a 32 bit ID of RAID member disk.
This ID must be used to send NVMe requests to individual
NVMe member disks.
NVME_GET_RAID_CONFIGURATION,
NVME_GET_SPARE_DISK_INFORMATION,

NVME_GET_PASSTHROUGH_DISKS_INFORMATION or
NVME_GET_JOURNALING_DRIVES_INFORMATION must be
used to get this ID.

ULONG

VendorSpecific[NVME

_IOCTL_VENDOR_SPECI

FIC_DW_SIZE];

Input Vendor unique qualifiers for vendor unique commands

ULONG

NVMeCmd[NVME_IOCTL_

CMD_DW_SIZE];

Input 64-byte submission entry defined in NVMe Specification

ULONG

CplEntry[NVME_IOCTL

_COMPLETE_DW_SIZE];

Input DW[0..3] of completion entry

ULONG Direction; Input Data transfer direction, from host to device or vice versa
ULONG QueueId; Input 0 means using Admin queue, otherwise, IO queue is used
ULONG

DataBufferLen;
Input Transfer byte length, including Metadata, starting at DataBuffer

ULONG MetaDataLen; Input Set to 0 if not supported or interleaved with data
ULONG

ReturnBufferLen;
Input Returned byte length from device to host, at least the length of

this structure. When data transfer required, add the length of
the data.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff566339(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff566339(v=vs.85).aspx

Private Intel® VROC IOCTLs

27

Intel Confidential

UCHAR

DataBuffer[1];
Input Start with Metadata if present, and then regular data

Note:

If NVMe pass through IOCTL was used to update
firmware on a device which is a RAID member disk, a
full system reboot is required. Any try to send device
reset command like STORAGE_BUS_RESET_REQUEST
can end with RAID failure.

5.12.3 Error handling

There are three levels of status that user applications receive after calling DeviceIoControl
API. First, it’s the return code of the API. Second, it’s the ReturnCode field of
SRB_IO_CONTROL structure, which is marked down by miniport driver. The third level is
the completion status included in the completion entry after the request had been issued
to the controller. It’s recommended that user applications look into all three levels of
status to ensure the request is completed successfully.

The following status is noted in ReturnCode of SRB_IO_CONTROL structure by miniport
driver when the request is processed by the driver. User applications need to examine
ReturnCode to find out if the driver has discovered any errors in the request.

When ReturnCode is NVME_IOCTL_SUCCESS, which indicates the request had been
issued to the Controller and user applications need to examine the completion status of
CplEntry. Otherwise, the request had not been issued to controller due to certain error.

enum _IOCTL_STATUS
{
 NVME_IOCTL_SUCCESS,
 NVME_IOCTL_INVALID_IOCTL_CODE,
 NVME_IOCTL_INVALID_SIGNATURE,
 NVME_IOCTL_INSUFFICIENT_IN_BUFFER,
 NVME_IOCTL_INSUFFICIENT_OUT_BUFFER,
 NVME_IOCTL_UNSUPPORTED_ADMIN_CMD,
 NVME_IOCTL_UNSUPPORTED_NVM_CMD,
 NVME_IOCTL_INVALID_ADMIN_VENDOR_SPECIFIC_OPCODE,
 NVME_IOCTL_INVALID_NVM_VENDOR_SPECIFIC_OPCODE,
 NVME_IOCTL_ADMIN_VENDOR_SPECIFIC_NOT_SUPPORTED, //AVSCC=0
 NVME_IOCTL_NVM_VENDOR_SPECIFIC_NOT_SUPPORTED, // NVSCC=0
 NVME_IOCTL_INVALID_DIRECTION_SPECIFIED,// when Direction is greater than 3
 NVME_IOCTL_INVALID_META_BUFFER_LENGTH,
 NVME_IOCTL_PRP_TRANSLATION_ERROR,
 NVME_IOCTL_INVALID_PATH_TARGET_ID,
 NVME_IOCTL_FORMAT_NVM_PENDING, // Only one Format NVM at a time

Private Intel® VROC IOCTLs

28

Intel Confidential

 NVME_IOCTL_FORMAT_NVM_FAILED,
 NVME_IOCTL_INVALID_NAMESPACE_ID
};

With the ReturnCode, there are three levels of status codes user applications can
examine after calling DeviceIoControl API:

 Level 1: Returned status of DeviceIoControl API

 Level 2: ReturnCode of SRB_IO_CONTROL structure

 Level 3: Status Field of Completion Entry

When the driver receives the request, it always marks SrbStatus as SRB_STATUS_SUCCESS
no matter what. In case of any errors, driver just marks down proper status code in
ReturnCode. Therefore, the basic scenario user applications need to follow to identify any
errors after calling DeviceIoControl is:

1. When DeviceIoControl returns with error, GetLastErr is used to find out more
details.

2. When DeviceIoControl returns successfully, ReturnCode needs to be examined to
see if the driver reports any errors.

3. When ReturnCode is NVME_IOCTL_SUCCESS, the Status Field of Completion
Entry serves as the final status of the completed NVMe command.

Example usage

29

Intel Confidential

6 Example usage

Example application shown in this chapter cover usage of 4 out of 8 IOCTLs presented
in previous chapter. It shows recommended procedure when sending NVMe IOCTLs to
member devices.

This application looks for any Miniport with at least 1 volume (using

NVME_GET_NUMBER_OF_RAID_VOLUMES). If it finds one, it gets number of devices of
the first volume of that Miniport (by using NVME_GET_RAID_INFORMATION). This
information is needed to allocate big enough buffer for the next IOCTL:
NVME_GET_RAID_CONFIGURATION, which returns information about all member

devices of that volume. From data returned by this IOCTL application gets rsteDiskID

of the first member disk. Finally IOCTL NVME_PASS_THROUGH_SRB_IO_CODE is being
sent to that disk. In this example, payload of this IOCTL is command ADMIN_IDENTIFY.
After receiving it, applications prints information about VID, SSVID, serial number,
model number and firmware version of target disk. During execution it also prints SCSI
port on which it found miniport, number of volumes on that port, member devices count
of the first found volume and serial number and rsteDiskID of the first disk returned by

NVME_GET_RAID_CONFIGURATION.

This code uses nvme.h header, which available in the internet1

#include <windows.h>
#include <winioctl.h>
#include <ntddscsi.h>
#include <stdio.h>
#include "nvme.h"

typedef struct _NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL {
 SRB_IO_CONTROL SrbIoCtrl;
 ULONG numberOfRaidVolumes;
} NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL, *PNVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL;

typedef struct _NVME_PASS_THROUGH_IOCTL {
 SRB_IO_CONTROL SrbIoCtrl;
 ULONG VendorSpecific[6];
 ULONG NVMeCmd[16];
 ULONG CplEntry[4];
 ULONG Direction;
 ULONG QueueId;
 ULONG DataBufferLen;
 ULONG MetaDataLen;
 ULONG ReturnBufferLen;
 UCHAR DataBuffer[1];
} NVME_RAID_PASS_THROUGH_IOCTL, *PNVME_RAID_PASS_THROUGH_IOCTL;

typedef struct _NVME_GET_RAID_CONFIGURATION_IOCTL {
 SRB_IO_CONTROL SrbIoCtrl;
 ULONG indexOfRaidVolume;
 ULONG ReturnBufferLen;
 UCHAR DataBuffer[1];
} NVME_GET_RAID_CONFIGURATION_IOCTL, *PNVME_GET_RAID_CONFIGURATION_IOCTL;

1 https://svn.openfabrics.org/svnrepo/nvmewin/trunk/source/nvme.h

https://svn.openfabrics.org/svnrepo/nvmewin/trunk/source/nvme.h

Example usage

30

Intel Confidential

typedef struct _NVME_GET_RAID_INFORMATION_IOCTL {
 SRB_IO_CONTROL SrbIoCtrl;
 ULONG indexOfRaidVolume;
 CHAR raidType[8];
 CHAR model[40];
 CHAR firmwareVersion[8];
 CHAR serialNumber[40];
 ULONG numberOfMemberDisks;
} NVME_GET_RAID_INFORMATION_IOCTL, *PNVME_GET_RAID_INFORMATION_IOCTL;

typedef struct _NVME_MEMBER_DISK_INFORMATION {
 ULONG rsteDiskID;
 CHAR diskModel[40];
 CHAR firmwareVersion[8];
 CHAR serialNumber[40];
 ULONG socketNumber;
 ULONG vmdControllerNumber;
 ULONG rootPortOffset;
 ULONG slotNumber;
} NVME_MEMBER_DISK_INFORMATION, *PNVME_MEMBER_DISK_INFORMATION;

#define NVME_GET_NUMBER_OF_RAID_VOLUMES \
 CTL_CODE(NVME_STORPORT_DRIVER, 0x805, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define NVME_GET_RAID_INFORMATION \
 CTL_CODE(NVME_STORPORT_DRIVER, 0x806, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define NVME_GET_RAID_CONFIGURATION \
 CTL_CODE(NVME_STORPORT_DRIVER, 0x807, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define NVME_PASS_THROUGH_SRB_IO_CODE \
 CTL_CODE(NVME_STORPORT_DRIVER, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define NVME_FROM_DEV_TO_HOST 2 /* Transfer data from device to host */
#define NVME_RAID_SIG_STR "NvmeRAID"
#define NVME_RAID_SIG_STR_LEN 8
#define NVME_STORPORT_DRIVER 0xE000
#define NVME_PT_TIMEOUT 40

int main()
{
 HANDLE hDevice = INVALID_HANDLE_VALUE;
 DWORD scsiPort;
 WCHAR buffer[MAX_PATH];
 LPTSTR pszTxt = _T("\\\\.\\Scsi");
 LPCTSTR pszFormat = _T("%s%d:");

 BOOL bRet = 0;
 NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL numberOfRaidVolumesIoctl;
 NVME_GET_RAID_INFORMATION_IOCTL raidInformationIoctl;
 PNVME_GET_RAID_CONFIGURATION_IOCTL raidConfigurationIoctl;
 PNVME_RAID_PASS_THROUGH_IOCTL nvmePassThroughIoctl;
 PNVMe_COMMAND pCmd;
 PADMIN_IDENTIFY_COMMAND_DW10 dw10;
 DWORD dwReturned;
 DWORD dwError = ERROR_SUCCESS;
 ULONG numberOfDisks;
 PNVME_MEMBER_DISK_INFORMATION diskInfo;
 PADMIN_IDENTIFY_CONTROLLER pIdCtrlr;
 UCHAR *tmp;
 int counter;

 for (scsiPort = 0; scsiPort < 16; scsiPort++)

Example usage

31

Intel Confidential

 {
 //Format the device name string to something like "\\.\Scsi0:"
 wsprintf(buffer, pszFormat, pszTxt, scsiPort);
 hDevice = CreateFile(buffer,
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 if (hDevice != INVALID_HANDLE_VALUE)
 {
 /* Sending NVME_GET_RAID_VOLUMES to find any controller with RAID volumes */

 //Set up the structure.
 ZeroMemory(&numberOfRaidVolumesIoctl,
sizeof(NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL));
 numberOfRaidVolumesIoctl.SrbIoCtrl.ControlCode =
NVME_GET_NUMBER_OF_RAID_VOLUMES;
 numberOfRaidVolumesIoctl.SrbIoCtrl.HeaderLength = sizeof(SRB_IO_CONTROL);
 memcpy((UCHAR*)(&numberOfRaidVolumesIoctl.SrbIoCtrl.Signature[0]),
NVME_RAID_SIG_STR, NVME_RAID_SIG_STR_LEN);
 numberOfRaidVolumesIoctl.SrbIoCtrl.Timeout = NVME_PT_TIMEOUT;
 numberOfRaidVolumesIoctl.SrbIoCtrl.Length = sizeof(numberOfRaidVolumesIoctl)
- sizeof(SRB_IO_CONTROL);
 numberOfRaidVolumesIoctl.SrbIoCtrl.ReturnCode = 0;

 //Call the IOCTL
 bRet = DeviceIoControl(hDevice, IOCTL_SCSI_MINIPORT,
&numberOfRaidVolumesIoctl, sizeof(NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL),
&numberOfRaidVolumesIoctl, sizeof(NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL), &dwReturned,
NULL);
 dwError = GetLastError();

 //If any RAID volumes are found, get it's configuration
 if (numberOfRaidVolumesIoctl.numberOfRaidVolumes > 0)
 {

 printf("Found %lu volumes on SCSI port %lu\n",
numberOfRaidVolumesIoctl.numberOfRaidVolumes,scsiPort);
 /* Sending NVME_GET_RAID_INFORMATION to get information of member disk
count of volume which is needed to */

 //Set up the structure.
 ZeroMemory(&raidInformationIoctl,
sizeof(NVME_GET_RAID_INFORMATION_IOCTL));
 raidInformationIoctl.SrbIoCtrl.ControlCode = NVME_GET_RAID_INFORMATION;
 raidInformationIoctl.SrbIoCtrl.HeaderLength = sizeof(SRB_IO_CONTROL);
 memcpy((UCHAR*)(&raidInformationIoctl.SrbIoCtrl.Signature[0]),
NVME_RAID_SIG_STR, NVME_RAID_SIG_STR_LEN);
 raidInformationIoctl.SrbIoCtrl.Timeout = NVME_PT_TIMEOUT;
 raidInformationIoctl.SrbIoCtrl.Length = sizeof(raidInformationIoctl) -
sizeof(SRB_IO_CONTROL);
 raidInformationIoctl.SrbIoCtrl.ReturnCode = 0;
 raidInformationIoctl.indexOfRaidVolume = 1;

 //Call the IOCTL
 bRet = DeviceIoControl(hDevice, IOCTL_SCSI_MINIPORT,
&raidInformationIoctl, sizeof(NVME_GET_RAID_INFORMATION_IOCTL), &raidInformationIoctl,
sizeof(NVME_GET_RAID_INFORMATION_IOCTL), &dwReturned, NULL);
 if(dwError = GetLastError())
 printf("dwError: %lu\n", dwError);

Example usage

32

Intel Confidential

 numberOfDisks = raidInformationIoctl.numberOfMemberDisks;
 printf("Number of NVMe RAID volume member disks: %lu\n", numberOfDisks);

 /* Sending NVME_GET_RAID_CONFIGURATION */

 //Set up the structure.
 raidConfigurationIoctl = (PNVME_GET_RAID_CONFIGURATION_IOCTL) malloc(
sizeof(NVME_GET_RAID_CONFIGURATION_IOCTL) + numberOfDisks *
sizeof(NVME_MEMBER_DISK_INFORMATION));
 if (raidConfigurationIoctl == NULL){
 CloseHandle(hDevice);
 return -1;
 }
 ZeroMemory(raidConfigurationIoctl,
sizeof(NVME_GET_RAID_CONFIGURATION_IOCTL) + numberOfDisks *
sizeof(NVME_MEMBER_DISK_INFORMATION));
 raidConfigurationIoctl->SrbIoCtrl.ControlCode =
NVME_GET_RAID_CONFIGURATION;
 raidConfigurationIoctl->SrbIoCtrl.HeaderLength = sizeof(SRB_IO_CONTROL);
 memcpy((UCHAR*)(&raidConfigurationIoctl->SrbIoCtrl.Signature[0]),
NVME_RAID_SIG_STR, NVME_RAID_SIG_STR_LEN);
 raidConfigurationIoctl->SrbIoCtrl.Timeout = NVME_PT_TIMEOUT;
 raidConfigurationIoctl->SrbIoCtrl.Length =
sizeof(NVME_GET_RAID_CONFIGURATION_IOCTL) + (numberOfDisks *
sizeof(NVME_MEMBER_DISK_INFORMATION)) - sizeof(SRB_IO_CONTROL);
 raidConfigurationIoctl->SrbIoCtrl.ReturnCode = 0;
 raidConfigurationIoctl->indexOfRaidVolume = 1;
 raidConfigurationIoctl->ReturnBufferLen = numberOfDisks *
sizeof(NVME_MEMBER_DISK_INFORMATION);

 //Call the IOCTL
 bRet = DeviceIoControl(hDevice, IOCTL_SCSI_MINIPORT,
raidConfigurationIoctl, sizeof(NVME_GET_RAID_CONFIGURATION_IOCTL) + (numberOfDisks *
sizeof(NVME_MEMBER_DISK_INFORMATION)),
 raidConfigurationIoctl, sizeof(NVME_GET_RAID_CONFIGURATION_IOCTL) +
(numberOfDisks * sizeof(NVME_MEMBER_DISK_INFORMATION)), &dwReturned, NULL);
 if (dwError = GetLastError())
 printf("dwError: %lu\n", dwError);

 diskInfo = (PNVME_MEMBER_DISK_INFORMATION) raidConfigurationIoctl-
>DataBuffer;
 printf("Serial: %s\nrsteDiskId:%lx\n",diskInfo->serialNumber,diskInfo-
>rsteDiskID);

 /* Sending NVME_PASSTHROUGH_IOCTL with ADMIN_IDENTIFY command payload */
 nvmePassThroughIoctl = (PNVME_RAID_PASS_THROUGH_IOCTL)
malloc(sizeof(NVME_RAID_PASS_THROUGH_IOCTL) + sizeof(ADMIN_IDENTIFY_CONTROLLER));
 if (nvmePassThroughIoctl == NULL) {
 free(raidConfigurationIoctl);
 CloseHandle(hDevice);
 return -1;
 }
 ZeroMemory(nvmePassThroughIoctl, sizeof(NVME_RAID_PASS_THROUGH_IOCTL) +
sizeof(ADMIN_IDENTIFY_CONTROLLER));
 nvmePassThroughIoctl->SrbIoCtrl.ControlCode =
NVME_PASS_THROUGH_SRB_IO_CODE;
 nvmePassThroughIoctl->SrbIoCtrl.HeaderLength = sizeof(SRB_IO_CONTROL);
 memcpy((UCHAR*)(&nvmePassThroughIoctl->SrbIoCtrl.Signature[0]),
NVME_RAID_SIG_STR, NVME_RAID_SIG_STR_LEN);
 nvmePassThroughIoctl->SrbIoCtrl.Timeout = NVME_PT_TIMEOUT;

Example usage

33

Intel Confidential

 nvmePassThroughIoctl->SrbIoCtrl.Length =
sizeof(NVME_RAID_PASS_THROUGH_IOCTL) + sizeof(ADMIN_IDENTIFY_CONTROLLER) -
sizeof(SRB_IO_CONTROL);
 nvmePassThroughIoctl->SrbIoCtrl.ReturnCode = diskInfo->rsteDiskID;
 pCmd = (PNVMe_COMMAND)nvmePassThroughIoctl->NVMeCmd;
 pCmd->CDW0.OPC = ADMIN_IDENTIFY;
 dw10 = (PADMIN_IDENTIFY_COMMAND_DW10)&(pCmd->CDW10);
 dw10->CNS = 1;
 nvmePassThroughIoctl->QueueId = 0; // Admin queue
 nvmePassThroughIoctl->DataBufferLen = 0;
 nvmePassThroughIoctl->Direction = NVME_FROM_DEV_TO_HOST;
 nvmePassThroughIoctl->ReturnBufferLen = sizeof(ADMIN_IDENTIFY_CONTROLLER)
+ sizeof(NVME_RAID_PASS_THROUGH_IOCTL);
 nvmePassThroughIoctl->VendorSpecific[0] = (DWORD)0;
 nvmePassThroughIoctl->VendorSpecific[1] = (DWORD)0;
 memset(nvmePassThroughIoctl->DataBuffer, 0x55,
sizeof(ADMIN_IDENTIFY_CONTROLLER));

 //Call the IOCTL
 bRet = DeviceIoControl(hDevice, IOCTL_SCSI_MINIPORT,
nvmePassThroughIoctl, sizeof(ADMIN_IDENTIFY_CONTROLLER) +
sizeof(NVME_RAID_PASS_THROUGH_IOCTL),
 nvmePassThroughIoctl, sizeof(ADMIN_IDENTIFY_CONTROLLER) +
sizeof(NVME_RAID_PASS_THROUGH_IOCTL), &dwReturned, NULL);
 if (dwError = GetLastError())
 printf("dwError: %lu\n", dwError);

 //Print returned payload
 pIdCtrlr = (PADMIN_IDENTIFY_CONTROLLER) nvmePassThroughIoctl->DataBuffer;

 printf("IdentifyController: NL_IOCTL_IDENTIFY: SUCCESS!!!\n");
 printf("IdentifyController: VID = 0x%x, SSVID = 0x%x \n",
 pIdCtrlr->VID, pIdCtrlr->SSVID);
 tmp = pIdCtrlr->SN;
 printf("IdentifyController: serialNum: ");
 counter = 20;
 while (counter--)
 {
 printf("%c", *tmp++);
 }
 printf("\n");
 tmp = pIdCtrlr->MN;
 printf("IdentifyController: modelNum: ");
 counter = 40;
 while (counter--)
 {
 printf("%c", *tmp++);
 }
 printf("\n");
 tmp = pIdCtrlr->FR;
 printf("IdentifyController: firmwarRev: ");
 counter = 8;
 while (counter--)
 {
 printf("%c", *tmp++);
 }
 printf("\n");

 free(raidConfigurationIoctl);
 free(nvmePassThroughIoctl);
 CloseHandle(hDevice);
 break;
 }

Example usage

34

Intel Confidential

 CloseHandle(hDevice);
 }
 }

 return 0;
}

References

35

Intel Confidential

7 References
NVM_Express_1_1b.pdf
https://svn.openfabrics.org/svnrepo/nvmewin/trunk/source/nvme.h

