Intel® Virtual RAID on CPU
(Intel® VROC) IOCTLs

IOCTLs for NVME pass-through and NVME RAID
member disks.

Document Revision 1.04

Intel Confidential

Intel® VROC IOCTLs Overview i n tE|)

Disclaimer
By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application” is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must

not rely on the absence or characteristics of any features or instructions marked "reserved” or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Code names featured are used internally within Intel to identify products that are in development and not yet
publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use
code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal
code names is at the sole risk of the user.

Intel, Atom, Core, and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and other
countries.

*Other names and brands may be claimed as the property of others.

Copyright ©2017 Intel Corporation. All rights reserved.

Intel Confidential

http://www.intel.com/design/literature.htm

Intel® VROC IOCTLs Overview i n tE|)

1 INEEI® VROC IOCTLS OVEIVIEW 1 iutiiiiitiiteieeete ittt et ate s e e et s e e a e e ate s e et eaeaanannas 5
1.1 The purpose of this dOCUMENT ...oiviiiiii e 5

1.2 Intel® Volume Management Device (Intel® VMD) Overviewcccvevvvvnvnnnnnn 5

1.3 JOUINAIING DIVES .ttt e e ettt e e aeaaeaas 5

1.4 Backwards compatibilityooveiniiiiiii e 5

2 NAVA\ZTSI=Te L 11 o W ele] 0.1 0 4 T=1 0 [=3P 7
2.1 List of supported admin COMMAaNASo.iuiiiiiiiiiie e e e 7

2.2 List of supported data commandsc.cooiiiiiiiiiii i e 7

2.3 NVMe SMART / Health Information ...ccuvviiiiiiiiiiiiiiiii i e raes 7

2.4 o =T o 1A VAV N PP 8

2.5 ASYNChIONOUS EVENES it e rae e 8

2.6 NVMe Firmware Update. . ..ociii i e e e 8

2.7 NVMe Firmware activate ..o e 8

2.8 L= ol =T T] =T 8

2.9 Y= ol == L 1 = 9

2.10 DEVICE Self-tESE ittt e 9

2.11 Format NVM COmMMand ...cuoiuiiiiiiiiii i e sttt e e aaeas 9

2.12 Security Send COMMANGviuiiiii e 9

2.13 Security Receive COMMANAviiriieiiie i rre e e ae s area e s ane e annanns 9

3 U] o] [1ol \AVA\ T=T (O 1@ I XX =YU{ o] o o] o P P 10
3.1 L@ A7 VT PP 10

3.2 Microsoft firmware update NVMe IOCTLS . ..iviiiiiiiii i e 10

3.3 Firmware update using SCSI pass through IOCTLcocvviviiiviiiiiie i nieenee s 11

4 Private NVMe IOCTLS SUP PO ..ttt ittt ettt ae e e e rae s e e e aneanereannaananes 12
4.1 Private IOCTLs signature and control code details.ccovviiiiiiiiiiiiinnnn, 12

4.2 Private IOCTLS data StrUCLUIE ...t e e s 12

5 Private INtEI® VROC TOCTLS tuuiiuiiuiiitiitiite ittt ittt aae et e et et et et et e aaeateraeaaeananes 14
5.1 L@ 1 VT PP 14

5.2 List of private IOCTLs for RAID VOIUMESccoiviiiiiiiiiiie i 14

5.3 NVME_GET_NUMBER_OF_RAID_VOLUMEScciiiiiiiiii i 14

5.3.1 IOCTL signature and control code:coiviiiiiiiiiiiiiii e, 15

5.3.2 IOCTL data structure: ...ooiiiii i e 15

5.4 NVME_GET_RAID_INFORMATIONcitiittittie et st et eaeeaaeateraeenerneeneenennes 15

5.4.1 IOCTL signature and control codeocvviiiiiiiiiiiii i 15

5.4.2 IOCTL data structure...cooii i e 16

5.5 NVME_GET_RAID_CONFIGURATION ...ttt st e eee e e e e naeens 16

5.5.1 IOCTL signature and control codeccovieiiiiiiiiiiii e, 17

5.5.2 IOCTL data StruCtUre.. .o e 17

5.5.3 Input/Output DataBuffer detailscoovviiiiiiiiiii e 17

5.6 NVME_GET_NUMBER_OF_SPARE_DISKS.....iiiiiiiiiiii i e 18

5.6.1 IOCTL signature and control code:oviiiiiiiiiiiii e 18

5.6.2 TOCTL data StrUCUNE: uviiiei i e e e e aneeas 18

5.7 NVME_GET_SPARE_DISKS_INFORMATIONciiiiiiiii it aee 19

5.7.1 IOCTL signature and control codeooviiiiiiiiiiiiieee e 19

3

Intel Confidential

Intel® VROC IOCTLs Overview i n tE|)

5.7.2 TOCTL data StrUCTUIE. ... i e e e 19

5.7.3 Input/Output DataBuffer structure.........ccccooviiiiiiiiiiiiiiiiiienn, 19

5.8 NVME_GET_NUMBER_OF_PASSTHROUGH_DISKSccicviiiiiiiiiiiienieieeens 20
5.8.1 IOCTL signature and control code:covoiiiiiiiiiiiiiiiiiiicr e 20

5.8.2 TOCTL data struCtUre: ..o e e eeeas 21

5.9 NVME_GET_PASSTHROUGH_DISKS_INFORMATIONcovviiiiniiiiniiininieinnnens 21
5.9.1 IOCTL signature and control codecociviiiiiiiiiiiiiiic e 21

5.9.2 TOCTL data struCtUre....vi e e e eeeas 21

5.9.3 Input/Output DataBuffer structure..........cccoiiiiiiiiiiiiiiiiieiiiiennn. 22

5.10 NVME_GET_NUMBER_OF_JOURNALING DRIVEScoiiiiiiiiiiiiiiiieni e 23
5.10.1 IOCTL signature and control code:covviiiiiiiiiiiiici e 23

5.10.2 IOCTL data struCture: ...coiviiiiiiiiiiiie s e as e nae e 23

5.11 NVME_GET_JOURNALING_DRIVES_INFORMATIONcciitiiiiiiiiieiniieiiaeiaanens 23
5.11.1 IOCTL signature and control codecocvviiiiiiiiiiiiiiiir e 23

5.11.2 IOCTL data struCtUre......iiviiiiii i e aa e 24

5.11.3 Input/Output DataBuffer structure........cccoviiiiiiiiiiiiiiiiiiiiiice, 24

5.12 NVME_PASS_THROUGH_SRB_IO_CODE.....ciciiiiitiiiiiiiiiiniiiieieeaaenaaaens 25
5.12.1 IOCTL signature and control codecocviiiiiiiiiiiiiiiiiieie e 25

5.12.2 IOCTL data struCtUre.....civiiiiii i e e e 25

5.12.3 Error handling ...o.oeiiiiii i 27

6 oY 0 0] o] (U [=1= T L= PP 29
7] =T =] o Lol PPN 35

4

Intel Confidential

Intel® VROC IOCTLs Overview (i n tel)

1 Intel® VROC IOCTLs Overview

1.1 The purpose of this document

This document presents all NVMe admin commands supported by Intel VROC and
describes how to send them to a particular NVMe device. This includes usage of Intel®
VROC IOCTLs to get information about disks in the system and using those
information to send NVMe private IOCTL to a given disk. Ending section consists of
sample code showing how to send an NVMe admin command to an NVMe RAID
member device.

1.2 Intel® Volume Management Device (Intel® VMD)
Overview

In previous versions of Intel® Rapid Storage Technology enterprise (Intel® RSTe)
NVMe driver, all pass-through devices had a storage controller correlated with it. If we
wanted to send an NVMe pass-through IOCTL to a device, we had to send it to its
controller. If we created a RAID volume, its member disks were no longer visible in
device manager. Devices marked as spare behaved the same. In order to send an
IOCTL to particular drives we had to target Intel® RSTe Virtual Controller, with Return
Code set to value correlated with this drive. This code could be obtained by private
Intel® RSTe NVMe IOCTLs.

Intel® VROC driver on the other hand has been developed with Intel® Volume
Management Device (Intel® VMD) in mind. With this technology, we can group NVMe
devices into VMD domains. Because of that, even if IOCTL target disk is passthrough,
it should be sent to a VMD controller representing a domain it is a part of and contains
a correct Return Code. This code can be obtained by new IOCTLs:
NVME_GET_NUMBER_OF_PASSTHROUGH_DISKS (Described in 5.8) and
NVME_GET_PASSTHROUGH_DISKS_INFORMATION (Described in 5.9).

1.3 Journaling Drives

Intel® VROC introduces a new feature: RAID5 Write Hole closure. In context of
sending IOCTLs, we only need to know, that this feature introduces new possible disk
usage in RAID systems: Journaling Drive. Journaling Drive as any other drive can be a
target of NVMe passhtrough IOCTL. To target such drive we need to send it to VMD
controller representing domain it is part of and set Return Code to value correlated
with that drive. Obtaining that value for Journaling Drives is possible by sending
IOCTLs: NVME_GET_NUMBER_OF_JOURNALING DRIVES (Described in 5.10) and
NVME_GET_JOURNALING_DRIVES_INFORMATION (Described in 5.11).

1.4 Backwards compatibility

Most structures of IOCTLs used to send NVMe passthrough IOCTL and access RAID
members and spare devices haven't changed since RSTe 4.3. The differences are that:

5

Intel Confidential

Intel® VROC IOCTLs Overview (i n tel)

e they must now target Intel VMD instead of Intel® RSTe Virtual Controller,
e the nvME MEMBER DISK_INFORMATION structure has been extended and therefor
the output buffer for the IOCTLs that return information about drives must be

bigger (for updated nvME MEMBER DISK_INFORMATION Structure layout check
5.5.3).

Intel Confidential

NVMe admin commands ' i n tel

2

NVMe admin commands

2.1

2.2

2.3

Intel® VROC supports all admin commands currently supported by NSG standalone
driver including vendor specific admin commands.

List of supported admin commands

Command Opcode
Get Log Page 0x02
Identify 0x06
Set Features 0x09
Get Features 0x0A
Asynchronous Event Request 0x0C
Firmware Activate 0x10
Firmware Image Download Ox11
Device Self-test 0x14
Format NVM 0x80
Security Send 0x81
Security Receive 0x82
Any vendor specific admin command 0xCO0-0xFF

List of supported data commands

Command Opcode
Flush 0x00
Write Uncorrectable 0x04
Compare 0x05

Data Set Management 0x09

Any vendor specific NVM commands 0x80-0xFF

NVMe SMART / Health Information

To read values of SMART and general health information the application sends Private
IOCTL ADMIN_GET_LOG_PAGE.

Intel® VROC uses private IOCTL mechanism to pass through ADMIN_GET_LOG_PAGE
command to appropriate NVMe device.

Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.) is an open standard
used by hard-drives and hosts to monitor drive health and report potential problems.
The SMART and health information are collected over the life of the NVMe controller
and is retained across power cycles.

Intel Confidential

NVMe admin commands i n tel)

By default, SMART monitoring is always enabled on NVMe products.

2.4 Identify NVMe

The Identify command returns a data buffer that describes the NVMe controller.
To read identification parameters from NVMe device applications will send identify
command.

Intel® VROC uses private IOCTL mechanism to pass through ADMIN_IDENTIFY
command to appropriate NVMe device.

Standalone Intel® NVMe driver supports this IOCTL properly.

2.5 Asynchronous Events

Intel® VROC uses private IOCTL mechanism to pass through
ADMIN_ASYNCHRONOUS_EVENT_REQUEST command to appropriate NVMe device.
Asynchronous events are used to notify host software of error and health information
as these events occur. To enable asynchronous events to be reported by the
controller, host software needs to issue one or more Asynchronous Event Request
commands to the controller.

2.6 NVMe Firmware update

Intel® VROC uses private IOCTL mechanism to pass through
ADMIN_FIRMWARE_IMAGE_DOWNLOAD command to appropriate NVMe device.
Standalone Intel® NVMe driver supports this IOCTL properly.

The ADMIN_FIRMWARE_IMAGE_DOWNLOAD private IOCTL is used to download
firmware image to the controller.

The new firmware image will not start to run right after
ADMIN_FIRMWARE_IMAGE_DOWNLOAD command. To select which firmware version
will be executed after NVMe device reset ADMIN_FIRMWARE_ACTIVATE command
must be used.

2.7 NVMe Firmware activate

Intel® VROC uses private IOCTL mechanism to pass through
ADMIN_FIRMWARE_ACTIVATE command.

Standalone Intel® NVMe driver supports this IOCTL properly.

The Firmware Activate command is used to verify that a valid firmware image has
been downloaded and to commit that revision to a specific firmware slot. The host
may select the firmware image to activate on the next controller reset as part of this
command.

2.8 Get Features

The Get Features command retrieves the attributes of the Feature specified.

Intel Confidential

NVMe admin commands (i n tel T)

Intel® VROC uses private IOCTL mechanism to pass through ADMIN_GET_FEATURES
command.

Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

2.9 Set Features

The Set Features command specifies the attributes of the Feature indicated.

Intel® VROC uses private IOCTL mechanism to pass through ADMIN_SET_FEATURES
command.

Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

2.10 Device Self-test

The Device Self-test command is used to start the device self-test operation or abort a
device self-test operation.

Intel® VROC uses private IOCTL mechanism to pass through
ADMIN_DEVICE_SELF_TEST command.

Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

2.11 Format NVM command

The Format NVM command is used to low level format the NVM media. This is used
when the host wants to change the LBA data size and/or metadata size.

Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

2.12 Security Send command

The Security Send command is used to transfer security protocol data to the
controller. The data structure transferred to the controller as part of this command
contains security protocol specific commands to be performed by the controller.
Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

2.13 Security Receive command

The Security Receive command transfers the status and data result of one or more
Security Send commands that were previously submitted to the controller.

The association between a Security Receive command and previous Security Send
command is dependent on the Security Protocol.

Intel® VROC passes this command to NVMe device in pass through mode and RAID
mode.

Intel Confidential

Public NVMe IOCTLs support (i n tel)

3 Public NVMe IOCTLs support

3.1 Overview

Intel® VROC supports humber of IOCTLs described below. Support will be limited to
passing through described commands to NVMe driver, according to their signature.

3.2 Microsoft firmware update NVMe IOCTLs

Following firmware update IOCTLs are not blocked by Intel® VROC driver however,
they should not be used on RAID member drives:

Control code Description

Used to query storage device for firmware information.
Details:

https://msdn.microsoft.com/en-
us/library/windows/desktop/mt718109(v=vs.85).aspx
Used to download firmware image to target storage device.
Details:

https://msdn.microsoft.com/en-
us/library/windows/desktop/mt718108(v=vs.85).aspx
Used to activate downloaded firmware image on target storage
device.

IOCTL_STORAGE_FIRMWARE_ACTIVATE Details:

https://msdn.microsoft.com/en-
us/library/windows/desktop/mt718107(v=vs.85).aspx

IOCTL_STORAGE_FIRMWARE_GET_INFO

IOCTL_STORAGE_FIRMWARE_DOWNLOAD

In case of NVMe devices under VMD controller, firmware IOCTLs shall be sent to
handle, obtained by createFile function with file name parameter set to physical
device name i.e.

HANDLE hDevice = CreateFile(
T ("\\\\.\\PhysicalDriveQO"),
0,
FILE SHARE_ READ | FI LE_SHARE WRITE,
NULL,
OPEN_EXISTING,
0,
NULL) ;

10

Intel Confidential

Public NVMe IOCTLs support ' i n te l T)

3.3 Firmware update using SCSI pass through IOCTL
With Intel® VROC it is possible to update device firmware using
IOCTL_SCSI_PASS_THROUGH_DIRECT command (https://msdn.microsoft.com/en-
us/library/windows/hardware/ff560521(v=vs.85).aspx).

For details, refer to SCSI Primary Commands specification.

11

Intel Confidential

Private NVMe IOCTLs support (i n tel)

4l Private NVMe IOCTLs support

For standalone NVMe driver private IOCTL “"NVME_PASS_THROUGH_IOCTL" is used to
pass NVMe admin commands to NVMe device. The same IOCTL is supported by Intel®
VROC. It can be sent to all NVMe devices even if it is a part of RAID volume.

If target disk isn't part of any VMD domain (VMD disabled), IOCTL can be sent directly
to its controller as with standalone NVMe driver (please note, this is out of scope of
Intel® VROC driver).

Otherwise it should be sent to one of the VMD controllers. To address specific disk the
special ID code should be placed in return code of IOCTL before sending. Obtaining
this ID code is possible by using NVME_GET_RAID_CONFIGURATION (See: 5.5),
NVME_GET_SPARE_DISKS_INFORMATION (See: 5.7),
NVME_GET_PASSTHROUGH_DISKS_INFORMATION (See: 5.9) or
NVME_GET_JOURNALING_DRIVES_INFORMATION (See: 5.11), depending on target
disk status.

4.1 Private IOCTLs signature and control code
details.

The following signature and control code must be set in Windows IOCTL:
IOCTL signature : "NvmeMini"

IOCTL control code:
#define NVME PASS THROUGH SRB IO CODE \
CTL7CODE(NVMEisTORPORTiDRIVER, 0x800, METHOD BUFFERED, FILEiANYiACCESS)

IOCTL return code: rsteDiskID

4.2 Private IOCTLs data structure

typedef struct NVME PASS THROUGH_IOCTL

{
SRB IO CONTROL SrbIoCtrl;

ULONG VendorSpecific [NVME_IOCTL VENDOR SPECIFIC DW_SIZE];
ULONG NVMeCmd [NVME_IOCTL_CMD DW_SIZE];

ULONG CplEntry[NVME IOCTL COMPLETE DW SIZE];

ULONG Direction;

ULONG Queueld;

ULONG DataBufferlen;

ULONG MetaDatalLen;

ULONG ReturnBufferlen;

UCHAR DataBuffer[1];

—

NVME_PASS THROUGH_IOCTL, *PNVME_ PASS THROUGH_IOCTL,

Name Description
SRB_IO_CONTROL SrbIoCtrl Input | Windows specific IOCTL header
Details:

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566
339(v=vs.85).aspx

ULONG Input | Vendor unique qualifiers for vendor
VendorSpecific[NVME_ TIOCTL_VENDOR_SP unique commands

ECIFIC DW SIZE];

ULONG Input | 64-byte submission entry defined in
NVMeCmd [NVMEiIOCTLicMDtiisIZE} ; NVMe SpeCIflcatlon

12

Intel Confidential

Private NVMe IOCTLs support (i n tel ’ ,

ULONG Input | DWJO0..3] of completion entry

CplEntry[NVME IOCTL COMPLETE DW SIZ

E];

ULONG Direction; Input | Data transfer direction, from host
to device or vice versa

ULONG Queueld; Input | 0 means using Admin queue,
otherwise, I0 queue is used

ULONG DataBufferLen; Input | Transfer byte length, including
Metadata, starting at DataBuffer

ULONG MetaDatalLen; Input | Set to 0 if not supported or
interleaved with data

ULONG ReturnBufferlLen; Input | Returned byte length from device
to host, at least the length of this
structure. When data transfer
required, add the length of the
data.

UCHAR DataBuffer([l]; Input | Start with Metadata if present, and
then regular data

13

Intel Confidential

Private Intel® VROC IOCTLs (i n tel)

5

Private Intel® VROC IOCTLs

5.1

5.2

Overview.

Intel® VROC supports creating RAID volumes only with devices connected to PCI-E
slots with VMD enabled.

Every VMD domain is visible in system as a separate storage controller. All IOCTLs to
NVMe devices (RAID members, spares, journaling drives and passthrough drives) and
NVMe RAID volumes need to be sent to the controller representing domain, which
target disk or volume is part of. The only exception is NVME_PASS_THROUGH IOCTL
which can be sent to any VMD controller.

List of private IOCTLs for RAID volumes
List of private Intel VROC IOCTLs and IOCTL signatures:

IOCTL name IOCTL Comment
signature

NVME_GET NUMBER OF RAID VOLUMES NvmeRAID

NVME_GET RAID INFORMATION NvmeRAID

NVME_GET RAID CONFIGURATION NvmeRAID

NVMEiGETiNUMBERioFisPAREiDISKS NvmeRAID Spare devices are not
members of any RAID
volumes.

NVME_GET RAID SPARE DISKS_INFORMATION | NvmeRAID

NVME GET NUMBER OF PASSTHROUGH DISKS NvmeRAID

J\ E GET E ORMATION NvmeRAID

NVME GET NU IG_DRIVES NvmeRAID

NVME GET NvmeRAID

INFORMATIO?N
NVME PASS THROUGH SRB IO CODE NvmeRAID | Similar to pass through

NVME: It has the same
control code but different
signature. This IOCTL will be
used to send admin
commands to NVMe RAID

member and spare devices

IOCTLs added in Intel® VROC has been highlighted in green. They are not supported
by previous versions of RSTe. Rest of the IOCTLs haven't been changed since previous
versions of Intel® RSTe.

NVME_GET_NUMBER_OF_RAID_VOLUMES

This IOCTL can be used to get number of NVME RAID volumes present in target VMD
domain.

14

Intel Confidential

Private Intel® VROC IOCTLs (i n tel 7

5.3.1 IOCTL signature and control code:

The following signature and control code must be set in Windows IOCTL:
IOCTL signature : "NvmeRAID"
IOCTL control code:

#define NVME_GET NUMBER OF RAID VOLUMES \
CTL_CODE (NVME_STORPORT DRIVER, 0x805, METHOD BUFFERED, FILE ANY ACCESS)

5.3.2 IOCTL data structure:

typedef struct NVME GET NUMBER OF RAID VOLUMES IOCTL {
SRB_TO CONTROL SrbIoCtrl;
ULONG numberOfRaidVolumes;

} NVME_GET NUMBER OF RAID VOLUMES IOCTL, *PNVME GET NUMBER OF RAID VOLUMES IOCTL;

Name Direction Description
SRB_IO_CONTROL Input Windows specific IOCTL header
SrbIoCtrl Details:

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85

).aspx
ULONG Output Number of NVME Raid volumes in target VMD
numberOfRaidvVolumes domain.

0 - no NVME RAID volumes.

5.4 NVME_GET_RAID_INFORMATION
This IOCTL provides general information about RAID volume:
e Model,
e Firmware version,
e Serial number,
e Total number of RAID member devices,

54.1 IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:
IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_GET_RAID INFORMATION \
CTL_CODE (NVME_STORPORT DRIVER, 0x806, METHOD BUFFERED, FILE ANY ACCESS)

15

Intel Confidential

Private Intel® VROC IOCTLs

5.4.2 IOCTL data structure

typedef struct NVME GET RAID INFORMATION IOCTL {

SRB IO CONTROL SrbIoCtrl;

ULONG indexOfRaidVolume;
CHAR raidType[8];

CHAR model[40];

CHAR firmwareVersion[8];
CHAR serialNumber[40];

ULONG numberOfMemberDisks;
} NVME GET RAID INFORMATION IOCTL,

Description of data structure:

*PNVME_GET RAID INFORMATION IOCTL;

Name Direction Description

SRB_IO_CONTROL Input Windows specific IOCTL header

SrbIoCtrl DetaI|S:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85
).aspx

ULONG , Input Range from 1 to numberOfRaidVolumes.

indexOfRaidvVolume To get maximum value of numberOfRaidVolumes
use NVME_GET_NUMBER_OF_RAID_VOLUMES

CHAR raidType[8] Output 8 char string null terminated describing type of
RAID.
Returned strings: RADIO, RAID1, RADIS5,
RAID10,

CHAR model[40] Output String presented by SSD Toolbox in “Drive
Summary” tab.

CHAR Output String presented by SSD Toolbox in “Drive

firmwareVersion[8] Sun1n1ary”tab.

CHAR Output String presented by SSD Toolbox in “Drive

serialNumber [40] Sununary”tab.

ULONG Output Number of member devices in NVME RAID

numberOfMemberDisks volume.

5.5 NVME_GET_RAID_CONFIGURATION

This IOCTL can be send to Intel® VROC driver to get following information about

NVME member devices:

- rsteDiskID,
- model,

- firmware version,

- serial number,

- detailed information about the physical location of the drive (more details in
Input/Output DataBuffer details paragraph)

In response to this IOCTL data buffer will be filled with data about all NVME RAID
member devices.
Size of this IOCTL depends on total number of NVMe member devices.

Intel Confidential

16

Private Intel® VROC IOCTLs i n tel)

5.5.1

5.5.2

5.5.3

IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:
IOCTL signature : "NvmeRAID"
IOCTL control code:

#define NVME GET RAID CONFIGURATION \
CTL CODE (NVME STORPORT DRIVER, 0x807, METHOD BUFFERED, FILE ANY ACCESS)

IOCTL data structure

typedef struct NVME GET RAID CONFIGURATION IOCTL {
SRB_IO CONTROL SrbIoCtrl;
ULONG indexOfRaidVolume;
ULONG ReturnBufferLen;
UCHAR DataBuffer[l];
} NVME_GET_RAID CONFIGURATION IOCTL, *PNVME GET RAID CONFIGURATION IOCTL;

Name Direction Description
SRB_IO_CONTROL Input Windows specific IOCTL header
SrbIoCtrl Deta|l5

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).

aspx
ULONG . Input Range from 1 to numberOfRaidVolumes.
indexOfRatdvolume To get maximum value of numberOfRaidVolumes
use NVME_GET_NUMBER_OF_RAID_VOLUMES
ULONG Input Size of DataBuffer:
ReturnBufferLen ReturnBufferLen = numberOfMemberDisks *
sizeof(NVMEiMEMBERiDISKiINFORMATION)
UCHAR In/Out Data buffer for member devices details.

DataBuffer([1]

Input/Output DataBuffer details

Application must provide “big enough” DataBuffer to get information about all member
devices.
The size of DataBuffer:

ReturnBufferLen = numberOfMemberDisks * sizeof(NVME_MEMBER_DISK_INFORMATION)

Where:

numberOfMemberDisks - is a total nhumber of NVMe devices used to build RAID
volume.

NVME_MEMBER_DISK_INFORMATION - data structure containing information about

NVMe device:

typedef struct NVME MEMBER DISK INFORMATION {
ULONG rsteDiskID;
CHAR diskModel[40];
CHAR firmwareVersion[8];
CHAR serialNumber[40];
ULONG socketNumber;
ULONG vmdControllerNumber;

17

Intel Confidential

Private Intel® VROC IOCTLs

5.6

5.6.1

5.6.2

ULONG rootPortOffset;
ULONG slotNumber;

} NVME MEMBER DISK INFORMATION,

intel)

*PNVME MEMBER DISK INFORMATION;

Name Direction Description

ULONG rsteDiskID Output 32 bit ID of disk. This ID must be used to
send NVMe admin requests to individual
NVMe devices marked as spare.

CHAR diskModel[40] Output String presented by SSD Toolbox in “Drive
Summary” tab

CHAR Output String presented by SSD Toolbox in “Drive

firmwareVersion([8] Summary” tab

CHAR Output String presented by SSD Toolbox in “Drive

serialNumber [40] Summary” tab

ULONG socketNumber Output CPU socket number.

ULONG Output VMD domain number.

vmdControllerNumber

ULONG rootPortOffset | Qutput In case of direct attached NVMe drives, offset
is a 0-based number of the slot, where the
drive is attached, within a given VMD domain.
In case of switch attached drives, this field
will be equal to switch slot number and a
slotNumber field has to be used to identify
the drives instead.

ULONG slotNumber Output Slot identifier.

NVME_GET_NUMBER_OF_SPARE_DISKS

in target VMD domain.

This IOCTL can be used to get total number of NVMe devices marked as spare drives

IOCTL signature and control code:

IOCTL signature
IOCTL control code:

The following signature and control code must be set in Windows IOCTL:
: "NvmeRAID"

#define NVME_GET_NUMBER OF SPARE DISKS \

CTL_CODE (NVME_STORPORT DRIVER,

IOCTL data structure:

typedef struct _NVME GET NUMBER OF SPARE DISKS IOCTL ({
SRB_IO CONTROL SrbIoCtrl;
ULONG numberOfSpareDisks;
} NVME_GET NUMBER _OF SPARE DISKS IOCTL, *PNVME GET NUMBER OF SPARE DISKS_IOCTL;

0x808, METHOD BUFFERED, FILE ANY ACCESS)

Intel Confidential

Name Direction Description
SRB_IO_CONTROL Input Windows specific IOCTL header
SrbIoCtrl Details:

18

Private Intel® VROC IOCTLs

5.7

5.7.1

5.7.2

5.7.3

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).

aspx
ULONG . Output Total number of NVME devices marked as spare
numberOfSpareDisks in target VMD domain.

NVME_GET_SPARE_DISKS_INFORMATION

This IOCTL can be send to Intel® VROC driver to get the following information about

NVME spare devices:
- rsteDiskID,
- model,
- firmware version,
- serial number,

- detailed information about the physical location of the drive (more details in

Input/Output DataBuffer details paragraph)

In response to this IOCTL data buffer will be filled with data about all NVME devices

marked as spare.

Size of this IOCTL depends on total number of NVMe spare devices in system.

IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:

IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME GET SPARE DISKS INFORMATION \

CTL_ CODE (NVME_ STORPORT DRIVER, 0x809, METHOD BUFFERED, FILE ANY ACCESS)

IOCTL data structure

typedef struct NVME GET SPARE DISKS INFORMATION IOCTL {

SRB_TIO_CONTROL SrbIoCtrl;

ULONG ReturnBufferLen;

UCHAR DataBuffer[1l];
} NVME_GET_ SPARE DISKS INFORMATION IOCTL,
*PNVME_GET_SPARE_DISKS_INFORMATION_IOCTL;

Name Direction | Description
SRB_IO_CONTROL | Input Windows specific IOCTL header
SrbIoCtrl Deta”s:

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).asp

X

ULONG Input Size of DataBuffer:
ReturnBufferLen ReturnBufferLen =

sizeof(NVME_DISK_INFORMATION)

numberOfSpareDisks *

DataBuffer[l]

UCHAR In/Out Data buffer for member devices details.

Input/Output DataBuffer structure

Application must provide “big enough” DataBuffer to get information about all spare

devices.

19

Intel Confidential

Private Intel® VROC IOCTLs

5.8

5.8.1

The size of DataBuffer:

ReturnBufferLen = numberOfSpareDisks * sizeof (NVME DISK INFORMATION)

Where:

numberOfSpareDisks - is a total number of NVMe devices marked as spare.

ntel)

NVME_DISK_INFORMATION - data structure containing information about NVMe disk:

typedef struct NVME DISK INFORMATION {
ULONG rsteDiskID;
CHAR diskModel[40];
CHAR firmwareVersion[8];
CHAR serialNumber[40];
ULONG socketNumber;
ULONG vmdControllerNumber;
ULONG rootPortOffset;

ULONG slotNumber;

} NVME DISK INFORMATION,

*PNVME DISK INFORMATION;

Name Direction Description

ULONG rsteDiskID Output 32 bit ID of disk. This ID must be used to
send NVMe admin requests to individual
NVMe devices marked as spare.

CHAR diskModel[40] Output String presented by SSD Toolbox in “Drive
Summary” tab

CHAR Output String presented by SSD Toolbox in “Drive

firmwareVersion[8] Sun1n1ary”tab

CHAR Output String presented by SSD Toolbox in “Drive

serialNumber [40] Sun1n1ary"tab

ULONG socketNumber Output CPU socket number.

ULONG Output VMD domain number.

vmdControllerNumber

ULONG rootPortOffset | Qutput In case of direct attached NVMe drives, offset
is a 0-based number of the slot, where the
drive is attached, within a given VMD domain.
In case of switch attached drives, this field
will be equal to switch slot number and a
slotNumber field has to be used to identify
the drives instead.

ULONG slotNumber Qutput Slot identifier.

NVME_GET_NUMBER_OF_PASSTHROUGH_DISKS

This IOCTL can be used to get total number of NVMe devices that are not member

devices of any volume nor marked as spare in target VMD domain.

IOCTL signature and control code:

IOCTL signature
IOCTL control code:

The following signature and control code must be set in Windows IOCTL:
: "NvmeRAID"

#define NVME GET NUMBER OF PASSTHROUGH DISKS \

CTL_CODE (NVME_STORPORT DRIVER,

Intel Confidential

0x80A, METHOD BUFFERED, FILE ANY ACCESS)

20

Private Intel® VROC IOCTLs i n tel)

5.8.2

5.9

5.9.1

5.9.2

IOCTL data structure:

typedef struct NVME GET NUMBER OF PASSTHROUGH DISKS IOCTL {
SRB_IO CONTROL SrbIoCtrl;
ULONG numberOfPassthroughDisks;

} NVME GET NUMBER OF PASSTHROUGH DISKS IOCTL,

*PNVME GET NUMBER OF PASSTHROUGH DISKS IOCTL;

Name Direction Description
SRB_IO_CONTROL Input Windows specific IOCTL header
SrbIoCtrl Details:

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).

aspx
ULONG Output Total number of NVME passthrough devices in
numberOfPassthrough target VMD domain.

Disks

NVME_GET_PASSTHROUGH_DISKS_INFORMATION

This IOCTL can be send to Intel® VROC driver to get the following information about
NVME passthrough devices:

- rsteDiskID,

- model,

- firmware version,

- serial number,

- detailed information about the physical location of the drive (more details in

Input/Output DataBuffer details paragraph)

In response to this IOCTL data buffer will be filled with data about all NVME
passthrough devices.
Size of this IOCTL depends on total number of NVMe passthrough devices in target
VMD domain.

IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:
IOCTL signature : "NvmeRAID"
IOCTL control code:

#define NVME GET PASSTHROUGH DISKS INFORMATION \
CTL CODE (NVME STORPORT DRIVER, 0x80B, METHOD BUFFERED, FILE ANY ACCESS)

IOCTL data structure

typedef struct NVME GET PASSTHROUGH DISKS INFORMATION IOCTL {
SRB_TIO_CONTROL SrbIoCtrl;
ULONG ReturnBufferLen;
UCHAR DataBuffer([1l];
} NVME GET PASSTHROUGH DISKS INFORMATION IOCTL,
*PNVME_GET_PASSTHROUGH_DISKS_INFORMATION_IOCTL;

Name Direction | Description
SRB_IO_CONTROL | Input Windows specific IOCTL header
SrbIoCtrl Details:

21

Intel Confidential

Private Intel® VROC IOCTLs

5.9.3

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).aspx

ULONG Input Size of DataBuffer:

ReturnBufferlen ReturnBufferLen = numberOfPassthroughDisks *
sizeof(NVME_DISK_INFORMATION)

UCHAR In/Out Data buffer for member devices details.

DataBuffer([1]

Where:

ULONG rsteDiskID;

CHAR diskModel[40];

CHAR firmwareVersion[8];
CHAR serialNumber[40];
ULONG socketNumber;

ULONG vmdControllerNumber;

ULONG rootPortOffset;
ULONG slotNumber;

} NVME DISK INFORMATION,

Input/Output DataBuffer structure

Application must provide “big enough” DataBuffer to get information about all
pasthrough devices.
The size of DataBuffer:

ReturnBufferLen = numberOfPassthroughDisks * sizeof (NVME DISK INFORMATION)

numberOfPassthroughDisks - is a total number of NVMe passthrough devices in target
VMD domain.
NVME_DISK_INFORMATION - data structure containing information about NVMe disk:

typedef struct NVME DISK INFORMATION {

*PNVME_DISK INFORMATION;

Name Direction Description

ULONG rsteDiskID Output 32 bit ID of disk. This ID must be used to
send NVMe admin requests to individual
NVMe passthrough devices.

CHAR diskModel [40] Output String presented by SSD Toolbox in “Drive
Summary” tab

CHAR Output String presented by SSD Toolbox in “Drive

firmwareVersion([8] Sun1n1ary"tab

CHAR Output String presented by SSD Toolbox in “Drive

serialNumber [40] Sununary”tab

ULONG socketNumber Output CPU socket number.

ULONG Output VMD domain number.

vmdControllerNumber

ULONG rootPortOffset | Qutput In case of direct attached NVMe drives, offset
is a 0-based number of the slot, where the
drive is attached, within a given VMD domain.
In case of switch attached drives, this field
will be equal to switch slot number and a
slotNumber field has to be used to identify
the drives instead.

ULONG slotNumber Output Slot identifier.

Intel Confidential

22

Private Intel® VROC IOCTLs (i n tel)

5.10 NVME_GET_NUMBER_OF_JOURNALING DRIVES

This IOCTL can be used to get total number of NVMe devices that are used as
journaling drives in target VMD domain.

5.10.1 IOCTL signature and control code:

The following signature and control code must be set in Windows IOCTL:
IOCTL signature : "NvmeRAID"
IOCTL control code:
#define NVME GET NUMBER OF JOURNALING DRIVES \
CTL_ CODE (NVME STORPORT DRIVER, 0x80C, METHOD BUFFERED, FILE ANY ACCESS)

5.10.2 IOCTL data structure:

typedef struct NVME GET NUMBER OF JOURNALING DRIVES IOCTL ({
SRB_IO CONTROL SrbIoCtrl;
ULONG numberOfJournalingDrives;
} NVME GET NUMBER OF JOURNALING DRIVES IOCTL,
*PNVME_GET_NUMBER_OF JOURNALING DRIVES IOCTL;

Name Direction Description
SRB_IO_CONTROL Input Windows specific IOCTL header
SrbIoCtrl Details:

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.8
5).aspx

ULONG Output Total number of NVME journaling drives in

numberOfJournalingDri target VMD domain
ves

5.11 NVME_GET_JOURNALING_DRIVES_INFORMATION

This IOCTL can be send to Intel® VROC driver to get the following information about
NVME journaling drives:

- rsteDiskID,

- model,

- firmware version,

- serial number,

- detailed information about the physical location of the drive (more details in

Input/Output DataBuffer details paragraph)

In response to this IOCTL data buffer will be filled with data about all NVME journaling
drives.
Size of this IOCTL depends on total humber of NVMe journaling drives in target VMD
domain.

5.11.1 IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:
IOCTL signature : "NvmeRATD"

IOCTL control code:
#defineNVME_GET_JOURNALING_DRIVES_INFORMATION \

23

Intel Confidential

Private Intel® VROC IOCTLs

5.11.2

5.11.3

Intel Confidential

CTL_ CODE (NVME STORPORT DRIVER,

IOCTL data structure

typedef struct NVME GET_ JOURNALING DRIVES INFORMATION IOCTL {

SRB_IO CONTROL SrbIoCtrl;
ULONG ReturnBufferlen;
UCHAR DataBuffer[1l];

0x80D, METHOD BUFFERED, FILE ANY ACCESS)

} NVME_GET_ JOURNALING DRIVES INFORMATION IOCTL, *
PNVME_GET_JOURNALING DRIVES INFORMATION_ IOCTL;

Name Direction | Description
SRB_IO_CONTROL | Input Windows specific IOCTL header
SrbIoCtrl Details:

http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).aspx

ULONG Input Size of DataBuffer:

ReturnBufferlen ReturnBufferLen = numberOfiournalingDrives *
sizeof(NVME_DISK_INFORMATION)

UCHAR In/Out Data buffer for journaling drives details.

DataBuffer([1]

Where:

ULONG rsteDiskID;

CHAR diskModel[40];

CHAR firmwareVersion[8];
CHAR serialNumber [40];
ULONG socketNumber;

ULONG vmdControllerNumber;

ULONG rootPortOffset;
ULONG slotNumber;

} NVME_DISK INFORMATION,

Input/Output DataBuffer structure

Application must provide “big enough” DataBuffer to get information about all
pasthrough devices.
The size of DataBuffer:

ReturnBufferLen = numberOfJournalingDrives * sizeof (NVME DISK INFORMATION)

numberOflournalingDrives - is a number of NVMe journaling drives in target domain.
NVME_DISK_INFORMATION - data structure containing information about NVMe disk:

typedef struct NVME DISK INFORMATION {

*PNVME_DISK_ INFORMATION;

Name Direction Description

ULONG rsteDiskID Output 32 bit ID of disk. This ID must be used to
send NVMe admin requests to individual
NVMe journaling drive.

CHAR diskModel[40] Output String presented by SSD Toolbox in “Drive
Summary” tab

CHAR Output String presented by SSD Toolbox in “Drive

firmwareVersion([8] Summary” tab

CHAR Output String presented by SSD Toolbox in “Drive

serialNumber [40]

Summary” tab

24

Private Intel® VROC IOCTLs (i n tE|)

5.12

5.12.1

5.12.2

ULONG socketNumber Output CPU socket number.

ULONG Output VMD domain number.

vmdControllerNumber

ULONG rootPortOffset | Qutput In case of direct attached NVMe drives, offset

is a 0-based number of the slot, where the
drive is attached, within a given VMD domain.
In case of switch attached drives, this field
will be equal to switch slot number and a
slotNumber field has to be used to identify
the drives instead.

ULONG slotNumber Output Slot identifier.

NVME_PASS_THROUGH_SRB_IO_CODE

Intel® VROC will provide an IOCTL to pass through admin commands to all NVMe
devices.

Warning: all IOCTLs for NVMe devices need to be send to Intel® VMD, instead of
sending directly to NVMe devices.

List of admin commands which can be send to NVMe devices using private IOCTL:

Command Hex
ADMIN GET LOG PAGE 0x02
ADMIN IDENTIFY 0x06
ADMIN SET FEATURES 0x09
ADMIN GET FEATURES 0x0A
ADMIN ASYNCHRONOUS EVENT REQUEST 0x0C
ADMIN FIRMWARE ACTIVATE 0x10
ADMIN FIRMWARE IMAGE DOWNLOAD 0x11
ADMIN FORMAT NVM 0x80
ADMIN SECURITY SEND 0x81
ADMIN SECURITY RECEIVE 0x82
Any vendor specific command 0xCO0-0xFF

IOCTL signature and control code

The following signature and control code must be set in Windows IOCTL:
IOCTL signature : "NvmeRAID"

IOCTL control code:
#define NVME_PASS_ THROUGH_SRB_IO_CODE \
CTL7CODE(NVMEisTORPORTiDRIVER, 0x800, METHODiBUFFERED, FILEiANYiACCESS)

IOCTL data structure

To simplify passthrough IOCTL interface Intel® VROC will reuse
NVME_PASS_THROUGH_IOCTL data structure introduced in standalone NVMe driver.
To properly identify RAID member disk, a property “ReturnCode” in SRB_IO_CONTROL
data structure will be used.

Application will have to write value of rsteDiskID returned by
NVME_GET_RAID_CONFIGURATION to property “ReturnCode”.

25

Intel Confidential

Private Intel® VROC IOCTLs

typedef struct SRB IO CONTROL {
ULONG HeaderLength;
UCHAR Signature[8];
ULONG Timeout;
ULONG ControlCode;
ULONG ReturnCode; //rsteDiskID must be written here before IOCTL send
ULONG Length;

} SRB_IO CONTROL, *PSRB_ IO CONTROL;

typedef struct NVME PASS THROUGH IOCTL {
SRB_IO_CONTROL SrbIoCtrl;

ntel)

ULONG VendorSpecific [NVME IOCTL VENDOR SPECIFIC DW SIZE];
ULONG NVMeCmd [NVME _IOCTL CMD DW SIZE];

ULONG CplEntry[NVME IOCTL COMPLETE DW SIZE];

ULONG Direction;

ULONG Queueld;

ULONG DataBufferLen;

ULONG MetaDatalen;

ULONG ReturnBufferlen;

UCHAR DataBuffer[1l];

} NVME PASS THROUGH IOCTL,

*NVME_PASS_ THROUGH IOCTL;

Name Description

SRB_IO_CONTROL Input Windows specific IOCTL header

SrbIoCtrl Details:
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff566339(v=vs.85).aspx
IMPORTANT: “"ReturnCode” property must be filled with
rsteDiskID.
rsteDiskID is a 32 bit ID of RAID member disk.
This ID must be used to send NVMe requests to individual
NVMe member disks.
NVME_GET_RAID_CONFIGURATION,
NVME_GET_SPARE_DISK_INFORMATION,
NVME_GET_PASSTHROUGH_DISKS_INFORMATION or
NVME_GET_JOURNALING_DRIVES_INFORMATION must be
used to get this ID.

ULONG Input Vendor unique qualifiers for vendor unique commands

VendorSpecific[NVME

IOCTL VENDOR SPECI

FIC DW SIZE];

ULONG Input 64-byte submission entry defined in NVMe Specification

NVMeCmd [NVME_TOCTL

CMD DW SIZE]; B

ULONG Input DWTIO0..3] of completion entry

CplEntry [NVME IOCTL

COMPLETE DW SIZE];

ULONG Direction; Input Data transfer direction, from host to device or vice versa

ULONG QueueId; Input 0 means using Admin queue, otherwise, IO queue is used

ULONG Input Transfer byte length, including Metadata, starting at DataBuffer

DataBufferLen;

ULONG MetaDatalen; Input Set to 0 if not supported or interleaved with data

ULONG Input Returned byte length from device to host, at least the length of

ReturnBufferLen; this structure. When data transfer required, add the length of
the data.

Intel Confidential

26

http://msdn.microsoft.com/en-us/library/windows/hardware/ff566339(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff566339(v=vs.85).aspx

Private Intel® VROC IOCTLs (i n tel)

UCHAR Input Start with Metadata if present, and then regular data
DataBuffer([1l];

Note:

If NVMe pass through IOCTL was used to update
firmware on a device which is a RAID member disk, a
full system reboot is required. Any try to send device
reset command like STORAGE_BUS_RESET_REQUEST
can end with RAID failure.

5.12.3

Error handling

There are three levels of status that user applications receive after calling DeviceloControl
API. First, it's the return code of the API. Second, it'’s the ReturnCode field of
SRB_IO_CONTROL structure, which is marked down by miniport driver. The third level is
the completion status included in the completion entry after the request had been issued
to the controller. It's recommended that user applications look into all three levels of
status to ensure the request is completed successfully.

The following status is noted in ReturnCode of SRB_I0O_CONTROL structure by miniport
driver when the request is processed by the driver. User applications need to examine
ReturnCode to find out if the driver has discovered any errors in the request.

When ReturnCode is NVME_IOCTL_SUCCESS, which indicates the request had been
issued to the Controller and user applications need to examine the completion status of
CplEntry. Otherwise, the request had not been issued to controller due to certain error.

enum _TIOCTL_STATUS

{
NVME_IOCTL_SUCCESS,
NVME_IOCTL_INVALID IOCTL_CODE,
NVME_IOCTL_INVALID_ SIGNATURE,
NVME_IOCTL_INSUFFICIENT_IN_BUFFER,
NVME_IOCTL_INSUFFICIENT_OUT_BUFFER,
NVME_IOCTL_UNSUPPORTED_ADMIN_CMD,
NVME_IOCTL_UNSUPPORTED_NVM_CMD,
NVME_IOCTL_INVALID_ ADMIN_VENDOR_SPECIFIC_OPCODE,
NVME_IOCTL_INVALID NVM_VENDOR_SPECIFIC_OPCODE,
NVME_IOCTL_ADMIN_VENDOR_SPECIFIC_NOT_SUPPORTED, //AVSCC=0
NVME_IOCTL_NVM_VENDOR_SPECIFIC_NOT_SUPPORTED, // NVSCC=0
NVME_IOCTL_INVALID DIRECTION_SPECIFIED,// when Direction is greater than 3
NVME_IOCTL_INVALID META BUFFER_LENGTH,
NVME_IOCTL_PRP_TRANSLATION_ERROR,
NVME_IOCTL_INVALID PATH_TARGET_ID,
NVME_IOCTL_FORMAT_NVM_PENDING, // Only one Format NVM at a time

27

Intel Confidential

Private Intel® VROC IOCTLs i n tE|)

NVME_IOCTL_FORMAT_NVM_FAILED,
NVME_IOCTL_INVALID NAMESPACE_ID

};

With the ReturnCode, there are three levels of status codes user applications can
examine after calling DeviceloControl API:

e Level 1: Returned status of DeviceloControl API
e Level 2: ReturnCode of SRB_I0O_CONTROL structure
e Level 3: Status Field of Completion Entry

When the driver receives the request, it always marks SrbStatus as SRB_STATUS SUCCESS
no matter what. In case of any errors, driver just marks down proper status code in
ReturnCode. Therefore, the basic scenario user applications need to follow to identify any
errors after calling DeviceloControl is:

1. When DeviceloControl returns with error, GetlLastErr is used to find out more
details.

2. When DeviceloControl returns successfully, ReturnCode needs to be examined to
see if the driver reports any errors.

3. When ReturnCode is NVME_IOCTL_SUCCESS, the Status Field of Completion
Entry serves as the final status of the completed NVMe command.

28

Intel Confidential

Example usage ‘ i n tel

6

Example usage

Example application shown in this chapter cover usage of 4 out of 8 IOCTLs presented
in previous chapter. It shows recommended procedure when sending NVMe IOCTLs to
member devices.

This application looks for any Miniport with at least 1 volume (using
NVME_GET_NUMBER_OF_RAID_VOLUMES). If it finds one, it gets number of devices of
the first volume of that Miniport (by using NVME_GET_RAID_INFORMATION). This
information is needed to allocate big enough buffer for the next IOCTL:
NVME_GET_RAID_CONFIGURATION, which returns information about all member
devices of that volume. From data returned by this IOCTL application gets rsteDiskID
of the first member disk. Finally IOCTL NVME_PASS_THROUGH_SRB_IO_CODE is being
sent to that disk. In this example, payload of this IOCTL is command ADMIN_IDENTIFY.
After receiving it, applications prints information about VID, SSVID, serial nhumber,
model number and firmware version of target disk. During execution it also prints SCSI
port on which it found miniport, number of volumes on that port, member devices count
of the first found volume and serial number and rsteDiskID of the first disk returned by
NVME_GET_RAID_CONFIGURATION.

This code uses nvme.h header, which available in the internet!

#include <windows.h>
#include <winioctl.h>
#include <ntddscsi.h>
#include <stdio.h>
#include "nvme.h"

typedef struct _NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL {
SRB_IO_CONTROL SrbIoCtrl;
ULONG numberOfRaidVolumes;
} NVME_GET_NUMBER_OF_RAID VOLUMES_IOCTL, *PNVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL;

typedef struct _NVME_PASS_THROUGH_IOCTL {
SRB_IO_CONTROL SrbIoCtrl;
ULONG VendorSpecific[6];
ULONG NVMeCmd[16];
ULONG CplEntry[4];
ULONG Direction;
ULONG Queueld;
ULONG DataBufferLen;
ULONG MetaDatalen;
ULONG ReturnBufferLen;
UCHAR DataBuffer[1];
} NVME_RAID_PASS THROUGH_IOCTL, *PNVME_RAID_PASS_THROUGH_IOCTL;

typedef struct _NVME_GET_RAID CONFIGURATION_IOCTL {
SRB_I0 CONTROL SrbIoCtrl;
ULONG indexOfRaidVolume;
ULONG ReturnBufferLen;
UCHAR DataBuffer[1];
} NVME_GET_RAID_CONFIGURATION_IOCTL, *PNVME_GET_RAID_CONFIGURATION_IOCTL;

1 https://svn.openfabrics.org/svnrepo/nvmewin/trunk/source/nvme.h

29

Intel Confidential

https://svn.openfabrics.org/svnrepo/nvmewin/trunk/source/nvme.h

Example usage

typedef struct NVME_GET RAID INFORMATION IOCTL {
SRB_IO_CONTROL SrbIoCtrl;
ULONG indexOfRaidVolume;
CHAR raidType[8];
CHAR model[40];
CHAR firmwareVersion[8];
CHAR serialNumber[40];
ULONG numberOfMemberDisks;
} NVME_GET_RAID_INFORMATION_IOCTL, *PNVME_GET_RAID_INFORMATION_IOCTL;

typedef struct NVME _MEMBER DISK_INFORMATION {
ULONG rsteDiskID;
CHAR diskModel[40];
CHAR firmwareVersion[8];
CHAR serialNumber[40];
ULONG socketNumber;
ULONG vmdControllerNumber;
ULONG rootPortOffset;
ULONG slotNumber;
} NVME_MEMBER_DISK_INFORMATION, *PNVME_MEMBER_DISK_INFORMATION;

#define NVME_GET_NUMBER_OF RAID_VOLUMES \
CTL_CODE (NVME_STORPORT DRIVER, ©x805, METHOD BUFFERED, FILE_ANY ACCESS)

#define NVME_GET_RAID_INFORMATION \
CTL_CODE (NVME_STORPORT_DRIVER, ©x806, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define NVME_GET_RAID_CONFIGURATION \
CTL_CODE (NVME_STORPORT_DRIVER, ©x807, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define NVME_PASS_THROUGH_SRB_IO CODE \
CTL_CODE (NVME_STORPORT DRIVER, ©x800, METHOD BUFFERED, FILE_ANY ACCESS)

#define NVME_FROM_DEV_TO_HOST 2 /* Transfer data from device to host */
#define NVME_RAID_SIG_STR "NvmeRAID"

#define NVME_RAID SIG_STR_LEN 8

#define NVME_STORPORT_DRIVER ©xE000

#define NVME_PT_TIMEOUT 40

int main()
HANDLE hDevice = INVALID_HANDLE_VALUE;
DWORD scsiPort;
WCHAR buffer[MAX_PATH];
LPTSTR pszTxt = _T("\\\\.\\Scsi");
LPCTSTR pszFormat = _T("%s%d:");

BOOL bRet = 0;

NVME_GET_NUMBER_OF_RAID VOLUMES_ IOCTL numberOfRaidVolumesIoctl;
NVME_GET_RAID_INFORMATION_IOCTL raidInformationIoctl;
PNVME_GET_RAID_CONFIGURATION_IOCTL raidConfigurationIoctl;
PNVME_RAID_PASS_THROUGH_IOCTL nvmePassThroughIoctl;
PNVMe_COMMAND pCmd;

PADMIN_IDENTIFY_COMMAND DW10 dw1®;

DWORD dwReturned;

DWORD dwError = ERROR_SUCCESS;

ULONG numberOfDisks;

PNVME_MEMBER _DISK INFORMATION diskInfo;
PADMIN_IDENTIFY_CONTROLLER pIdCtrlr;

UCHAR *tmp;

int counter;

for (scsiPort = ©; scsiPort < 16; scsiPort++)

30

Intel Confidentia

Example usage l n te l T

//Format the device name string to something like "\\.\Scsie@:"
wsprintf(buffer, pszFormat, pszTxt, scsiPort);
hDevice = CreateFile(buffer,

GENERIC_READ | GENERIC_WRITE,

FILE_SHARE_READ | FILE_SHARE_WRITE,

NULL,

OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL,

NULL);

if (hDevice != INVALID_HANDLE_VALUE)

{

/* Sending NVME_GET_RAID_VOLUMES to find any controller with RAID volumes */

//Set up the structure.

ZeroMemory (&numberOfRaidVolumesIoctl,
sizeof(NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL));

numberOfRaidVolumesIoctl.SrbIoCtrl.ControlCode =
NVME_GET_NUMBER_OF_RAID_ VOLUMES;

numberOfRaidVolumesIoctl.SrbIoCtrl.HeaderLength = sizeof(SRB_IO CONTROL);

memcpy ((UCHAR*) (&numberOfRaidVolumesIoctl.SrbIoCtrl.Signature[0]),
NVME_RAID_SIG_STR, NVME_RAID SIG_STR_LEN);

numberOfRaidvVolumesIoctl.SrbIoCtrl.Timeout = NVME_PT_TIMEOUT;

numberOfRaidVolumesIoctl.SrbIoCtrl.Length = sizeof(numberOfRaidVolumesIoctl)
- sizeof(SRB_IO CONTROL);

numberOfRaidVolumesIoctl.SrbIoCtrl.ReturnCode = 0;

//Call the IOCTL

bRet = DeviceIoControl(hDevice, IOCTL_SCSI_MINIPORT,
&numberOfRaidVolumesIoctl, sizeof(NVME_GET_NUMBER_OF RAID VOLUMES IOCTL),
&numberOfRaidVolumesIoctl, sizeof(NVME_GET_NUMBER_OF_RAID_VOLUMES_IOCTL), &dwReturned,
NULL);

dwError = GetLastError();

//If any RAID volumes are found, get it's configuration
if (numberOfRaidVolumesIoctl.numberOfRaidVolumes > 9)
{

printf("Found %lu volumes on SCSI port %lu\n",
numberOfRaidVolumesIoctl.numberOfRaidVolumes,scsiPort);

/* Sending NVME_GET_RAID_INFORMATION to get information of member disk
count of volume which is needed to */

//Set up the structure.
ZeroMemory (&raidInformationIoctl,
sizeof (NVME_GET_RAID_INFORMATION_IOCTL));
raidInformationIoctl.SrbIoCtrl.ControlCode = NVME_GET_RAID_INFORMATION;
raidInformationIoctl.SrbIoCtrl.HeaderLength = sizeof(SRB_IO CONTROL);
memcpy ((UCHAR*) (&raidInformationIoctl.SrbIoCtrl.Signature[@]),
NVME_RAID_SIG_STR, NVME_RAID SIG_STR_LEN);
raidInformationIoctl.SrbIoCtrl.Timeout = NVME_PT_TIMEOUT;
raidInformationIoctl.SrbIoCtrl.Length = sizeof(raidInformationIoctl) -
sizeof (SRB_IO_CONTROL);
raidInformationIoctl.SrbIoCtrl.ReturnCode = 0;
raidInformationIoctl.indexOfRaidVolume = 1;

//Call the IOCTL
bRet = DeviceIoControl(hDevice, IOCTL_SCSI_MINIPORT,
&raidInformationIoctl, sizeof(NVME_GET_RAID_INFORMATION_IOCTL), &raidInformationIoctl,
sizeof (NVME_GET_RAID_INFORMATION_IOCTL), &dwReturned, NULL);
if(dwError = GetLastError())
printf("dwError: %lu\n", dwError);

31

Intel Confidential

Example usage i n te l T

numberOfDisks = raidInformationIoctl.numberOfMemberDisks;
printf("Number of NVMe RAID volume member disks: %lu\n", numberOfDisks);

/* Sending NVME_GET_RAID_CONFIGURATION */

//Set up the structure.
raidConfigurationIoctl = (PNVME_GET_RAID_CONFIGURATION_IOCTL) malloc(
sizeof (NVME_GET_RAID CONFIGURATION IOCTL) + numberOfDisks *
sizeof(NVME_MEMBER_DISK_INFORMATION));
if (raidConfigurationIoctl == NULL){
CloseHandle(hDevice);
return -1;
}
ZeroMemory(raidConfigurationIoctl,
sizeof (NVME_GET_RAID CONFIGURATION IOCTL) + numberOfDisks *
sizeof (NVME_MEMBER_DISK_INFORMATION));
raidConfigurationIoctl->SrbIoCtrl.ControlCode =
NVME_GET_RAID_CONFIGURATION;
raidConfigurationIoctl->SrbIoCtrl.HeaderLength = sizeof(SRB_IO_CONTROL);
memcpy ((UCHAR*) (&raidConfigurationIoctl->SrbIoCtrl.Signature[0]),
NVME_RAID SIG_STR, NVME_RAID_ SIG_STR_LEN);
raidConfigurationIoctl->SrbIoCtrl.Timeout = NVME_PT_TIMEOUT;
raidConfigurationIoctl->SrbIoCtrl.Length =
sizeof (NVME_GET_RAID CONFIGURATION_ IOCTL) + (numberOfDisks *
sizeof (NVME_MEMBER_DISK_INFORMATION)) - sizeof(SRB_IO_CONTROL);
raidConfigurationIoctl->SrbIoCtrl.ReturnCode = 0;
raidConfigurationIoctl->indexOfRaidVolume = 1;
raidConfigurationIoctl->ReturnBufferLen = numberOfDisks *
sizeof (NVME_MEMBER_DISK_INFORMATION);

//Call the IOCTL
bRet = DeviceIoControl(hDevice, IOCTL_SCSI_MINIPORT,
raidConfigurationIoctl, sizeof(NVME_GET RAID CONFIGURATION IOCTL) + (numberOfDisks *
sizeof(NVME_MEMBER_DISK_INFORMATION)),
raidConfigurationIoctl, sizeof(NVME_GET RAID CONFIGURATION IOCTL) +
(numberOfDisks * sizeof(NVME_MEMBER_DISK_INFORMATION)), &dwReturned, NULL);
if (dwError = GetLastError())
printf("dwError: %lu\n", dwError);

diskInfo = (PNVME_MEMBER_DISK_INFORMATION) raidConfigurationIoctl-
>DataBuffer;

printf("Serial: %s\nrsteDiskId:%1x\n",diskInfo->serialNumber,diskInfo-
>rsteDiskID);

/* Sending NVME_PASSTHROUGH_IOCTL with ADMIN_IDENTIFY command payload */
nvmePassThroughIoctl = (PNVME_RAID_PASS_THROUGH_IOCTL)
malloc(sizeof(NVME_RAID_PASS THROUGH IOCTL) + sizeof(ADMIN IDENTIFY_ CONTROLLER));
if (nvmePassThroughIoctl == NULL) {
free(raidConfigurationIoctl);
CloseHandle(hDevice);
return -1;
}
ZeroMemory (nvmePassThroughIoctl, sizeof(NVME_RAID_PASS_THROUGH_IOCTL) +
sizeof (ADMIN_IDENTIFY_CONTROLLER));
nvmePassThroughIoctl->SrbIoCtrl.ControlCode =
NVME_PASS_THROUGH_SRB_IO_CODE;
nvmePassThroughIoctl->SrbIoCtrl.HeaderLength = sizeof(SRB_IO CONTROL);
memcpy ((UCHAR*) (&nvmePassThroughIoctl->SrbIoCtrl.Signature[0]),
NVME_RAID_SIG_STR, NVME_RAID_SIG_STR_LEN);
nvmePassThroughIoctl->SrbIoCtrl.Timeout = NVME_PT_TIMEOUT;

32

Intel Confidential

Example usage

intel.

nvmePassThroughIoctl->SrbIoCtrl.Length =

sizeof (NVME_RAID_PASS_THROUGH_IOCTL) + sizeof(ADMIN_IDENTIFY_CONTROLLER) -
sizeof(SRB_IO _CONTROL);

nvmePassThroughIoctl->SrbIoCtrl.ReturnCode = diskInfo->rsteDiskID;

pCmd = (PNVMe_COMMAND)nvmePassThroughIoctl->NVMeCmd;

pCmd->CDWO.OPC = ADMIN_IDENTIFY;

dwl@ = (PADMIN_IDENTIFY_ COMMAND DW10)&(pCmd->CDW1@);

dwle->CNS = 1;

nvmePassThroughIoctl->Queueld = @; // Admin queue
nvmePassThroughIoctl->DataBufferLen = 0;

nvmePassThroughIoctl->Direction = NVME_FROM_DEV_TO_HOST;
nvmePassThroughIoctl->ReturnBufferLen = sizeof(ADMIN_IDENTIFY_ CONTROLLER)

+ sizeof (NVME_RAID_PASS_THROUGH_IOCTL);

nvmePassThroughIoctl->VendorSpecific[@] = (DWORD)®;
nvmePassThroughIoctl->VendorSpecific[1] = (DWORD)®;
memset (nvmePassThroughIoctl->DataBuffer, ©x55,

sizeof (ADMIN_IDENTIFY CONTROLLER));

//Call the IOCTL
bRet = DevicelIoControl(hDevice, IOCTL_SCSI_MINIPORT,

nvmePassThroughIoctl, sizeof(ADMIN_IDENTIFY_CONTROLLER) +
sizeof(NVME_RAID_PASS_THROUGH_IOCTL),

nvmePassThroughIoctl, sizeof(ADMIN_IDENTIFY_CONTROLLER) +

sizeof (NVME_RAID PASS THROUGH IOCTL), &dwReturned, NULL);

Intel Confidential

if (dwError = GetLastError())
printf("dwError: %lu\n", dwError);

//Print returned payload
pIdCtrlr = (PADMIN_IDENTIFY_CONTROLLER) nvmePassThroughIoctl->DataBuffer;

printf("IdentifyController: NL_IOCTL_IDENTIFY: SUCCESS!!!\n");

printf("IdentifyController: VID = Ox%x, SSVID = @x%x \n",
pIdCtrlr->VID, pIdCtrlr->SSVID);

tmp = pIdCtrlr->SN;

printf("IdentifyController: serialNum: ");

counter = 20;

while (counter--)

printf("%c", *tmp++);

}

printf("\n");

tmp = pIdCtrlr->MN;
printf("IdentifyController: modelNum: ");
counter = 40;

while (counter--)

printf("%c", *tmp++);

}

printf("\n");

tmp = pIdCtrlr->FR;
printf("IdentifyController: firmwarRev: ");
counter = 8;

while (counter--)

printf("%c", *tmp++);
X
printf("\n");
free(raidConfigurationIoctl);
free(nvmePassThroughIoctl);

CloseHandle(hDevice);
break;

33

Example usage

Intel Confidential

CloseHandle(hDevice);

return 0;

34

References

7 References

5
~r
(‘1

NVM_Express_1_1b.pdf
https://svn.openfabrics.org/svnrepo/nvmewin/trunk/source/nvme.h

35

Intel Confidential

